研究论文 正式出版 版本 2 Vol 10 (1) : 79-86 2019
下载
汉中市秋季PM2.5昼夜变化特征
Diurnal variation characteristics of PM2.5 in Hanzhong in autumn
: 2018 - 09 - 14
200 3 0
摘要&关键词
摘要:为探讨汉中市秋季PM2.5昼夜变化特征,于2015年9月7日至9月17日利用中流量大气颗粒物采样仪在汉中市三个不同站点分昼夜采集了PM2.5滤膜样品,并分别利用热光碳分析仪(DRI-2011)和离子色谱(Dionex-600) 分析了PM2.5中碳组分和水溶性离子组分,主要探讨了PM2.5及其碳组分和水溶性离子昼夜变化特征。结果显示PM2.5浓度低于国家空气质量一级标准浓度值;PM2.5中主要化学组分包括SNA和有机类物质,白天和夜间占比分别达到32.3%、26.9%和28.9%、27.8%;PM2.5颗粒物呈酸性。除SO42- 、Mg2+和Ca2+之外,PM2.5及其化学组分均呈现夜间浓度高于白天的特征。离子的赋存形态分析表明,SO42- 更多以(NH4)2SO4的形式存在于PM2.5中,本文相关结果可为地方环保政策的制定提供参考和基础数据。
关键词:汉中;PM2.5;碳组分;水溶性离子
Abstract & Keywords
Abstract: Background, aim, and scope Fine particulate matter(PM2.5) has been widely concerned by people and scientists due to its negative impacts on climate, human health, and ecological environment. To better understand air pollution in China, more characteristics of PM2.5 chemical components should be considered in urban areas. Hanzhong(105°30.5′ – 108°24.6′E, 32°15.3′ – 33°56.6′N) is located in southwest of Shannxi province and has a special basin topography. The air pollution in Hanzhong has gradually become severe deterioration with economic development limited research about PM2.5. In the present study, PM2.5 samples were collected at three urban sites in Hanzhong to investigate the characterizations of chemical species in PM2.5 during autumn. This study could provide valuable information and dataset for air pollution prevention in Hanzhong. Materials and methods PM2.5 samples including daytime (8:00-20:00) and night (20:00-8:00) measurements were collected at three observation sites in Hanzhong from 7 to 17 September 2015. The samples were collected on pre-backed quartz fiber filters (QM/A, Whatman Inc., U.K.) by mid-volume samplers (TE-5030, TISCH Inc., USA). The PM2.5 mass concentrations on each sample was weighted by a microbalance (±1μg sensitivity Mettle M3,Switzerland). The organic carbon(OC) and element carbon(EC) were analyzed by a Thermal/Optical Carbon Analyzer(DRI-2001) under IMPROVE_A protocol. Water-soluble inorganic ions (Cl-, NO3- , SO42- , Na+, NH4+ , K+, Mg2+, Ca2+) were analyzed by an Ion Chromatograph (Dionex-600) using the aqueous extracts of aerosol filters. Results The average mass concentration of PM2.5 was 27.04μg·m-3 in autumn, and the main components in PM2.5 were SNA (SO42- , NO3- and NH4+ ) and organic matter with both contribution of ~30% to PM2.5 mass. The average concentrations of OC, EC, SO42- , NO3- and NH4+ were 3.85, 2.93, 1.62, 5.43, and 1.67μg·m-3 during daytime and 5.76, 3.29, 1.96, 4.95, and 1.75μg·m-3 during nighttime, respectively. Furthermore, the concentrations of anions followed the order of SO42- > NO3- > Cl-, while the cations followed the order of NH4+ > K+ > Ca2+ > Na+ > Mg2+. A strong correlation (R2 > 0.93) was found between anions and cations for all samples, indicating that the five cations and three anions were the major ions extracted from filters. The slopes (cation/anion) of linear regression during daytime and nighttime were 0.86 and 0.81, respectively, which indicates the aerosol particles were acidic in Hanzhong. Further, OC correlated strongly with EC (R2 > 0.82), which indicated similar sources for carbonaceous species. Discussion The diffusion of pollutants was difficult at night due to low atmospheric boundary layer, and this led to higher PM2.5 loadings at night compared with the daytime. The strong correlation among SO42- , NO3- and NH4+ and the results of regression analysis indicated that main existing forms of the three ions were (NH4)2SO4, NH4HSO4, NH4NO3 in PM2.5. Further, the estimated NH4+ concentrations correlated well with the measured values(R2 > 0.93) with a slope of 1.2 indicating that SO42- was maily in the form of (NH4)2SO4. The well correlation between K+ and Cl- at night (R2 > 0.73) revealed that they may come from biomass burning. Conclusions The average concentration of PM2.5 was lower than the first level of national ambient air quality standards. The concentrations of SNA and organic matter accounted for 32.3 and 26.9% of PM2.5 mass at daytime and 28.9 and 27.8% abundance at night, respectively. PM2.5 was generally acidic. The PM2.5 concentration at night was higher than that in daytime. Recommendations and perspectives ­This research provides a significant scientific basic for understanding the characteristics of PM2.5 and its chemical components. However, for the future pollution mitigation, more researches on aerosol in Hanzhong should be conducted.
Keywords: Hanzhong; PM2.5; carbonaceous components; water-soluble ions
近年来,由于大气灰霾事件频发,使得大气环境污染问题成为较为严重的社会问题,大气灰霾主要是由颗粒物污染所导致,所以大气颗粒物的相关内容是目前的研究热点(Huang et al., 2014; Liu et al., 2015; Zhang et al., 2015)。目前已有的研究表明大气颗粒物PM2.5 (指空气空气动力学粒径小于2.5μm的细微颗粒物)对气候变化、人体健康、生态环境等影响较大(Poschl, 2005),其中黑碳组分具有较强的吸光性,对大气具有一定的增温效应(Haywood et al., 2000);PM2.5中的重金属元素Pb,As以及多环芳烃组分等对人体健康具有致癌、致畸、致突变效应(Censi et al., 2011);超细颗粒物(PM1)由于其粒径大小接近可见光的波长范围,所以对光的吸收较强,进而影响大气环境的能见度(Booth et al., 2012)。中国环境保护部也于2012年颁布新的环境空气质量标准(GB3056-2012)将PM2.5纳入大气常规监测指标中,并与2016年1月1日起全国范围内实施(http://www.mep.gov.cn/gkml/hbb/bgg/201203/t20120302_224145.htm)。目前国内外学者对于PM2.5的研究主要集中在其化学组成、来源以及污染成因方面,并且主要集中在经济较为发达的地区。例如张仁健等(2002)对北京采暖期前后的大气颗粒物化学组成特征展开研究;王英峰等(2010)对北京大气颗粒中多环芳烃的季节变化特征展开研究;张懿华等(2014)对上海大气颗粒物中碳组分来源展开研究;谭吉华等(2013)对广州市秋季灰霾期间大气颗粒物中的有机酸污染特征展开研究。
汉中市虽地处关中平原之外,大气污染问题相对较轻,但是近年来随着“一带一路”战略的实施,汉中市开始迈入快速发展期,大气污染问题也逐渐开始凸显,但是目前尚未见到针对汉中市大气PM2.5相关的研究。随着陕西省“铁腕治霾”专项行动方案的实施,汉中市的大气污染防治工作也面临新的问题。本文拟通过对2015年9月7日至9月17日汉中PM2.5的昼夜对比观测研究,探讨其PM2.5污染特征,为汉中市大气污染防治以及后续经济发展规划提供重要的基础资料。
1   样品采集与分析
1.1   PM2.5样品采集
汉中市(105°30.5′-108°24.6′E, 32°15.3′-33°56.6′N)地处陕西省西南部,东、北与安康市、西安市、宝鸡市接壤,西南与甘肃省、四川省毗邻。于2015年9月7日至9月17日使用中流量(16.7L/min)颗粒物采样器(TE-5030,TISCH Inc., USA)在汉中市南郑水厂(107°1'2.4"E, 33°2'10.86"N)、市环保局(107°1'34.26"E, 33°4'28.51"N)、兴元新区(107°1'11.26"E, 33°6'59.45"N)三个站点分昼夜采集PM2.5样品,其中白天采样时间为8:00至20:00,夜间采样时间为20:00至次日8:00,利用直径为47mm的石英滤膜(QM/A, Whatman Inc., U.K.)收集PM2.5,滤膜在使用前置于马弗炉中800℃高温烘烤3小时,去除可能的污染物。
1.2   质量浓度及化学组分分析
PM2.5质量浓度使用精度为1μg的微电子天平(Mettle M3,Switzerland)进行称重分析。滤膜在采样前后分别称量3次,每次称量之前,先将滤膜在恒温(20~23℃)恒湿箱(RH 35~45%)中放置24 h 以上至恒重,且每两次称重的误差分别小于15μg (采样前)和20μg (采样后) (Watson et al., 2017)。称重后的滤纸保存于聚苯乙烯皮氏皿中,用铝箔纸密封,冷藏于4℃的冰箱内,待分析。采样前后的滤膜质量差除以采样体积即可得到质量浓度数据。
PM2.5中碳组分(OC, EC)浓度使用DRI Model 2001热光碳分析仪基于IMPROVE_A分析协议规定的热光反射法(TOR)进行分析,测试原理及质量控制相关内容见Cao et al(2003),该仪器对OC和EC的检测限低于1μg·m-3(Chow et al., 2007)。
水溶性离子使用Dionex-600型离子色谱仪进行分析,共分析了Cl-, NO3- , SO42- , Na+, NH4+ , K+, Mg2+, Ca2+八种离子,分析方法及质量控制相关内容参见Zhang et al(2011)。
2   结果与讨论
2.1   PM2.5及其碳组分污染特征
秋季PM2.5及其化学组分质量浓度如表1所示,其中PM2.5的平均浓度为27.04±14.64μg·m-3,低于国家环境空气质量一级标准日均浓度值(35μg·m-3,GB3095-2012),同时低于西安市和宝鸡市秋季PM2.5浓度(西安,53.29-358.16μg·m-3,甘小凤等(2011);宝鸡,38.84μg·m-3,王向锋等(2016))。除此之外,白天PM2.5平均浓度为24.35±10.48μg·m-3,较夜间平均浓度29.98±17.44μg·m-3低5.63μg·m-3,这主要可能是因为夜间大气边界层高度较低,污染物扩散条件相对较差,进而夜间浓度相对白天更高。总体来看,汉中市秋季PM2.5污染程度相对较轻。
表1   汉中市秋季PM2.5及其化学组分质量浓度(单位:μg·m-3)
参数
Parameter
秋季 Autumn
(n=60)
白天 Daytime
(n=30)
夜间 Night
(n=30)
白天/夜间
Day/Night
PM2.527.04±14.6424.35±10.4829.98±17.440.81
OC4.79±3.983.85±1.545.76±5.330.67
EC3.07±1.752.93±1.133.29±2.180.89
Cl-0.39±0.400.28±0.270.48±0.460.59
NO3-1.73±1.311.62±0.981.96±1.690.83
SO42-5.15±3.865.43±3.864.95±3.871.10
Na+0.16±0.130.15±0.130.17±0.120.90
NH4+1.68±1.381.67±1.381.75±1.420.96
K+0.38±0.230.37±0.210.39±0.240.94
Mg2+0.03±0.020.03±0.020.03±0.021.27
Ca2+0.35±0.250.38±0.280.31±0.231.19
OC和EC是大气颗粒物中的重要化学组分,约占城市地区PM2.5浓度的20%~50% (Cao et al., 2003),汉中市秋季PM2.5中OC和EC平均浓度分别为4.79±3.98μg·m-3和3.07±1.75μg·m-3,在PM2.5中的占比分别为17.7%和11.4%。其中OC和EC白天平均浓度分别为3.85±1.54μg·m-3和2.93±1.13μg·m-3,均低于夜间平均浓度5.76±5.33μg·m-3和3.29±2.18μg·m-3,与PM2.5的昼夜变化特征保持一致。OC的昼夜比值相对EC较低,这主要可能是因为OC、EC的来源存在一定的差异,其中EC主要来源于各种不完全燃烧过程一次排放,且在大气中存在形式相对较为稳定,而OC除了污染源的一次排放贡献之外,光化学反应和气-粒转化等过程也会生成OC (Cao et al., 2009)。
一次排放源(如机动车尾气、燃煤)所产生的OC与EC,具有相似的排放率,在大气中受到的诸如大气稳定度、风速等气象因子的影响也相似的,其扩散稀释水平相当,因而浓度具有较好的相关性,而二次有机碳的浓度则主要取决于前体物的浓度水平以及温度、光照、湿度等影响光化学反应的因素(Hallquist et al., 2009)。因此,利用OC和EC的相关性,可以在一定程度上对大气中碳气溶胶的来源进行定性分析(Wen et al., 2016),汉中市秋季PM2.5中OC和EC之间的相关性如图1所示,其中白天和夜间OC、EC之间的相关性均较好(R2>0.8),表明OC和EC的来源基本一致。


图1   秋季PM2.5中OC、EC相关性比昼夜变化特征
Fig.1 Diurnal variations of correlation of OC and EC in PM2.5 in autumn
2.2   PM2.5中水溶性离子浓度变化特征
PM2.5中Cl-、NO3- 、SO42- 、Na+、NH4+ 、K+、Mg2+和Ca2+离子的浓度水平如表1所示,采样期间的平均浓度分别为0.39±0.40μg·m-3、1.73±1.31μg·m-3、5.15±3.86μg·m-3、0.16±0.13μg·m-3、1.68±1.38μg·m-3、0.38±0.23μg·m-3、0.03±0.02μg·m-3和0.35±0.25μg·m-3。含量最丰富的是SNA(SO42- , NO3- , NH4+ )组分,占总离子浓度水平的86.6%( SO42- :50.9%;NO3- :17.3%;NH4+ :18.2%),内陆城市大气颗粒物中的SO42- 和NO3- 是典型的二次无机气溶胶,主要由化石燃料(煤和石油等) 燃烧产生的SO2 和NOx在大气反应生成(刘立忠等, 2017)。NH4+ 通常是由大气中的氨气转化形成,氨气主要来自植物活动排放、动植物腐烂的尸体,土壤微生物排放等天然过程(Paulot et al., 2014)。Cl-与K+浓度仅次于以上三种离子,水溶性的K+主要来源于生物质燃烧,Cl-除了来源于生物质燃烧,燃煤也会排放一定量的Cl-(张婷等, 2017)。表1还总结了水溶性离子浓度的昼夜变化,其中SO42- 、Mg2+和Ca2+质量浓度昼夜变化趋势为昼 > 夜;而K+、Cl-、NO3- 、NH4+ 以及Na+昼夜变化趋势相反,为夜 > 昼。Mg2+和Ca2+主要来自于扬尘源,夜间人为活动减少导致扬尘进入大气环境中的量降低,同时夜间近地面大气较为稳定,有利于扬尘沉降,这是Mg2+和Ca2+夜间浓度低于白天的主要原因(张婷等, 2007)。SO42- 主要是由SO2反应生成,白天相对夜间光照更强、湿度更大,非均相反应加强,更有利于SO2向SO42- 转化,同时夜间工业活动相对白天更少,SO2排放量随之减少,所以白天SO42- 浓度相对更高。NO3- 主要是由NO2等气体反应生成,NO2气体由于在温度较高、臭氧浓度较高的条件下极易被消耗,所以白天浓度明显低于夜间浓度。K+、NH4+ 以及Na+浓度的昼夜比值接近于1,所以昼夜变化不显著;但是Cl-浓度夜间明显高于白天,这主要可能是受采样期间夜间秸秆燃烧影响。
2.3   PM2.5酸碱性以及其离子赋存形态
大气颗粒物的酸碱性对降水的pH值有很重要的影响,它可能引起降水的酸化,也可能对降水的酸性起到中和作用。本文通过阴阳离子平衡来分析汉中秋季PM2.5的酸碱性(Cheng et al., 2012)。阴阳离子平衡公式如下所示,其中分子表示不同离子的浓度。
\[\mathrm{C}\mathrm{E}\left(\mathrm{C}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{ }\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}\right)=\frac{{\mathrm{N}\mathrm{a}}^{+}}{23}+\frac{{\mathrm{N}\mathrm{H}}_{4}^{+}}{18}+\frac{{\mathrm{K}}^{+}}{39}+\frac{{\mathrm{M}\mathrm{g}}^{2+}}{12}+\frac{{\mathrm{C}\mathrm{a}}^{2+}}{20}\]
\[\mathrm{A}\mathrm{E}\left(\mathrm{A}\mathrm{n}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{ }\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}\right)=\frac{{\mathrm{S}\mathrm{O}}_{4}^{2-}}{48}+\frac{{\mathrm{N}\mathrm{O}}_{3}^{-}}{62}+\frac{{\mathrm{C}\mathrm{l}}^{-}}{35.5}\]
秋季观测期间汉中市PM2.5昼夜阴阳离子平衡结果如图2所示,白天和夜间阴阳离子摩尔当量的相关系数R2分别为0.9424和0.9386,斜率接近1,表明样品测试数据有效,没有重要的离子遗漏;白天和夜间的CE/AE比值分别为0.8580和0.8113,阳离子相对亏损,表明PM2.5整体呈酸性(Huang et al., 2012)。


图2   秋季白天和夜间 PM2.5中阴阳离子平衡关系
Fig.2 Ions balance of PM2.5 at daytime and night in autumn
水溶性离子之间的相关性可以进一步分析PM2.5中离子的来源及其赋存形态。PM2.5中水溶性离子之间的相关系数如表2所示,其中左下方数据为白天离子间的相关系数,右上方数据为夜间离子间的相关系数。白天离子之间的相关性相对夜间更强,这主要可能是因为白天PM2.5的来源相对固定。白天Mg2+与Ca2+之间的相关性强于夜间,主要是因为Mg2+与Ca2+主要在白天产生,且来源基本一致。K+与Cl-、NO3- 和NH4+ 的相关性都较高,可能和生物质燃烧过程有关系,主要是因为K+与主要来源于生物质燃烧,同时生物质燃烧也会排放一定量的Cl-、NO3- 和NH4+ (Chen et al., 2016)。此外,K+与NO3- 及SO42- 的相关性都比较好,指示了KNO3及K2SO4等离子间的结合方式存在(张婷等, 2017)。
表2   秋季昼夜PM2.5中水溶性离子之间的相关性
Cl-NO3-SO42-Na+NH4+K+Mg2+Ca2+
Cl-10.310.090.68-0.040.730.510.55
NO3-0.6710.740.100.770.71-0.12-0.14
SO42-0.550.831-0.030.970.580.15-0.07
Na+0.140.250.381-0.170.560.530.57
NH4+0.760.830.960.3410.490.02-0.09
K+0.700.860.870.380.8910.310.31
Mg2+-0.250.080.070.13-0.070.0410.67
Ca2+-0.35-0.07-0.080.11-0.19-0.100.781
除此之外,SO42- 、NO3- 和NH4+ 相互之间的相关系数在白天和夜间均较高(R2>0.74),而这三种离子主要是由二次转化形成,且离子之间可以以(NH4)2SO4、NH4HSO4、NH4NO3三种形态存在于颗粒中。当SO42- 与NH4+ 主要以(NH4)2SO4形式存在时,颗粒物中NH4+ 的浓度可通过式(1)计算得出,当SO42- 与NH4+ 主要以NH4HSO4形式存在时,颗粒物中NH4+ 的浓度可通过式(2)计算得出(Kang et al., 2004; Shen et al., 2008):
NH4+ =0.29 NO3- +0.38 SO42- (1)
NH4+ =0.29 NO3- +0.29 SO42- (2)
计算所得的NH4+ 浓度与观测数据之间的相关性如图3所示,拟合的斜率表明,以单一的(NH4)2SO4和NH4HSO4形式存在时计算所得的NH4+ 浓度与实际浓度均存在一定的偏差,这表明NH4+ 和SO42- 的结合方式包括(NH4)2SO4和NH4HSO4这两种形式。其中白天和夜间均是公式(1)拟合结果的斜率更接近于1,且相关性更好,这表明PM2.5中NH4+ 和SO42- 更多以(NH4)2SO4形式存在。结合前面的阴阳离子平衡分析结果,NH4+ 明显不足,因此SO42- 、NO3- 还可能会和Ca2+、Mg2+、K+等离子相互结合。


图3   两种方法下秋季白天和夜间的NH4+ 实测浓度与理论计算浓度对比
Fig.3 Comparison on observation and simulation concentration of NH4+ at daytime and night in autumn
2.4   PM2.5质量平衡特征
为了进一步对比汉中市秋季PM2.5昼夜变化特征,对其质量平衡特征进行分析,计算方法如下(卫菲菲等, 2017):
OM = 1.6OC;
其他= PM2.5 – (OM+EC+NO3- +SO42- +NH4+ )
其中OM是指有机类物质(Organic Matter),主要是来源于一次排放和二次反应生成;EC、NO3- 、SO42- 和NH4+ 分别为各自组分的平均浓度;其他是指PM2.5中其他未计算组分,包括无机元素、矿物粉尘等。结果如图4所示,除去其他组分,PM2.5中OM组分含量最丰富,夜间占比(27.8%)略高于白天(26.9%),昼夜差异不明显;其次是SO42- 和EC组分,其占比均呈现白天高于夜间的特征,这主要是由于白天的工业活动和人为排放相对夜间更多;NO3- 和NH4+ 组分相对较低,其占比昼夜差异均不明显。其中SO42- 、NO3- 和NH4+ 主要来源于二次反应,OM中也有部分来源二次反应,所以总体来看,汉中市秋季PM2.5更多受大气环境中二次化学反应影响。


图4   秋季PM2.5质量平衡昼夜变化特征
Fig.4 Mass balance of PM2.5 at daytime and night in autumn
3   结论
(1)汉中市秋季PM2.5的日均浓度为27.04±14.64μg·m-3,低于国家空气质量一级标准,PM2.5及其化学组分浓度中,除了SO42- 、Mg2+和Ca2+外,均呈现夜间高于白天的特点。
(2)秋季PM2.5颗粒物呈现酸性特征,其中SO42- 、NO3- 和NH4+ 在颗粒物中同时以(NH4)2 SO4、NH4HSO4、NH4NO3三种形态存在,但是SO42- 更多是以(NH4)2 SO4的形式存在,白天PM2.5中水溶性离子的相关性更强。
(3)对比分析白天和夜间PM2.5的化学组成,其中SNA和OM组分占比最高,说明汉中市秋季PM2.5更多受大气中二次化学反应影响。
致谢
甘小凤, 曹军骥, 王启元, 等. 2011. 西安市秋季大气细粒子PM2.5中化学元素的浓度特征和来源[J].安徽农业科学, 39(19): 11692-11694. [Gan X F, Cao J J, Wang Q Y, et al. 2011. Concentration characteristics and sources of chemical elements in atmospheric fine particles PM2.5 in Autumn in Xi'an City[J]. Journal of Anhui Agricultural Science, 39(19):11692-11694.]
刘立忠, 薛梁磊, 韩婧, 等. 2017. 西安市全年中PM2.5水溶性无机离子变化特征[J].环境工程学报, 11(4): 2402-2406. [Liu L Z, Xue L L, Han J, et al. 2017. Annual variation of water-soluble inorganic ions in PM2.5 in Xi'an[J]. Chinese Journal of Environmental Engineering, 11(4): 2402-2406.]
孟静静, 侯战方, 刘晓迪, 等. 2017. 泰山夏季 PM2.5中二元羧酸类SOA的分子组成及来源[J].环境科学, 38(2): 445-452. [Meng J J, Hou Z F, Liu X D, et al.2017. Compositions and sources of summer time dicarboxylic acids and related SOA in PM2.5 from Mt. Taishan[J]. Environmental Science, 38(2): 445-452.]
谭吉华, 赵金平, 段菁春, 等. 2013. 广州秋季灰霾污染过程大气颗粒物有机酸的污染特征[J].环境科学, 34(05): 1982-1987. [Tan J H, Zhao J P, Duan J C, et al. 2013. Pollution characteristics of organic ccids in atmospheric particles during haze periods in autumn in Guangzhou[J]. Environmental Science, 34(05): 1982-1987.]
卫菲菲, 刘 昊, 陆晓波, 等. 2017. 南京市大气细颗粒物二次组分的时空变化特征[J].中国环境科学, 37(08): 2866-2876. [Wei F F, Liu H, Lu X B, et al. 2017. Temporal and spatial characteristics of secondary components of PM2.5 in Nanjing [J]. China Environmental Science, 37(08): 2866-2876.]
王向锋, 黄战胜. 2016. 2014年宝鸡市大气颗粒物时空分布特征分析[J]. 环境保护科学, 42(1): 100-103. [Wang X F, Huang Z S. 2016. analysis of spatial-temporal distribution characteristics of PM in Baoji city in 2014[J]. Environmental Protection Science, 42(1): 100-103.]
王英锋, 张姗姗, 李杏茹, 等. 2010. 北京大气颗粒物中多环芳烃浓度季节变化及来源分析[J]. 环境化学, 29(03): 369-375. [Wang Y F, Zhang S S, Li X R, et al. 2010. Seasonal variation and source identification of polycyclic aromatic hydrocabons(PAHs) in airborne particulates of Beijing[J]. Environmental Chemistry, 29(03): 369-375.]
张婷, 曹军骥, 刘随心. 2017. 宝鸡市PM2.5中水溶性离子组分污染特征及来源分析[J].地球环境学报, 8(1): 46-54. [Zhang T, Cao J J, Liu S X. 2017. Pollution characteristics and sources of water-soluble ions in PM2.5 in Baoji[J]. Journal of Earth Environment, 8(1): 46-54.]
张婷, 曹军骥, 吴枫, 等. 2007. 西安春夏季气体及PM2.5中水溶性组分的污染特征[J].中国科学院研究生院学报, 24(5): 641-647. [Zhang T, Cao J J, Wu F, et al. 2007. Characterization of gases and water-soluble ion of PM2.5 during spring and summer of 2006 in Xi'an[J]. Journal of the graduate school of the Chinese Academy of Sciences, 24(5): 641-647.]
张懿华, 王东方, 赵倩彪, 等. 2014. 上海城区PM2.5中有机碳和元素碳变化特征及来源分析[J].环境科学, 35(9): 3263-3270. [Zhang Y H, Wang D F, Zhao Q B, et al.2014. Characteristics and sources of organic carbon and elemental carbon in PM2.5 in Shanghai urban area[J]. Environmental Science, 35(9): 3263-3270.]
张仁健, 王明星, 胡 非, 等. 2002. 采暖期前和采暖期北京大气颗粒物的化学成分研究[J].中国科学院研究生院学报, 19(1): 75-81. [Zhang R J, Wang M X, Hu F, et al. 2002. Elemental concentrations and distributions of atmospheric particles before and in heating period in Beijing[J]. Journal of the graduate school of the Chinese Academy of Sciences, 19(1): 75-81.]
Booth B B B, Dunstone N J, Halloran P R, et al. 2012. Aerosols implicated as a prime driver of twentieth-century north Atlantic climate variability[J]. Nature, 484(7393): 228-232.
Cao J J, Xu B Q, He J Q, et al. 2009. Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote mountainous region in western China[J]. Atmospheric Environment, 43(29): 4444-4452.
Cao J J, L S C, Ho K F, et al. 2003. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period[J]. Atmospheric Environment, 37(11): 1451-1460.
Cao J J, Zhu C S, Chow J C, et al. 2009. Black carbon relationships with emissions and meteorology in Xi'an, China[J]. Atmospheric Research, 94(2): 194-202.
Censi P, Zuddas P, Randazzo L A, et al. 2011. Source and nature of inhaled atmospheric dust from trace element analyses of human bronchial fluids[J]. Environmental Science & Technology, 45(15): 6262-6267.
Chen J, Li C, Ristovski Z, et al. 2016. A review of biomass burning: emissions and impacts on air quality, health and climate in China[J]. Science of the Total Environment, 579: 1000.
Cheng M C, You C F, Cao J J, et al. 2012. Spatial and seasonal Variability of water-soluble ions in PM2.5 aerosols in 14 major cities in China[J]. Atmospheric Environment, 60(6): 182-192.
Chow J C, Watson J G, Chen L W, et al. 2007. The IMPROVE_A temperature protocol for Thermal/Optical carbon analysis: maintaining consistency with a long-term database[J]. Journal of Air &Waste Management Association, 57(9): 1014-1023.
Hallquist M, Wenger J C, Baltensperger U, et al. 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues[J]. Atmospheric Chemistry & Physics, 9(1): 5155-5236.
Haywood J, Boucher O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review[J]. Reviews of Geophysics, 38: 513-543.
Huang H, Zou C W, Cao J J, et al. 2012. water-soluble ions in PM2.5 on the Qianhu campus of Nanchang University, Nanchang city: indoor-outdoor distribution and source implications[J]. Aerosol and Air Quality Research, 12(3): 435-443.
Huang R J, Zhang Y, Bozzetti C, et al. 2014. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 514(7521): 218.
Kang C, Lee H, Kang B S, et al. 2004. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea[J]. Atmospheric Environment, 38(28): 4749-4760.
Liu J, Scheuer E, Dibb J, et al. 2015. Brown carbon aerosol in the north American aontinental troposphere: sources, abundance, and radiative forcing[J]. Atmospheric Chemistry & Physics, 15(14): 7841-7858.
Paulot F, Jacob D J, Pinder R W, et al. 2014. Ammonia emissions in the United States, European Union, and China Derived by high‐resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH3)[J]. Journal of Geophysical Research Atmospheres, 119(7): 4343-4364.
Poschl U. 2005. Atmospheric Aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 44(46): 7520-7540.
Wei W, Cheng S Y, Liu L et al. 2016. Source apportionment of PM2.5 in Tangshan, China--hybrid approaches for primary and secondary species apportionment[J]. Frontiers of Environmental Science & Engineering, 10(5): 83-96.
Watson J G, Tropp R J, Kohl S D, et al. 2017. Filter processing and gravimetric analysis for suspended particulate matter samples[J]. Aerosol Science & Engineering, 1(2): 93-105.
Zhang F, Wang Z W, Cheng H R, et al. 2015. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China[J]. Science of the Total Environment, 518-519: 97-105.
Zhang T, Cao J J, Tie X X, et al. 2011. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: seasonal variations and sources[J]. Atmospheric Research, 102(1): 110-119.
Shen Z X, Arimoto R, Cao J J, et al. 2008. Seasonal variations and evidence for the effectiveness of pollution controls on water-soluble inorganic species in total suspended particulates and fine particulate matter from Xi'an, China[J]. Journal of Air &Waste Management Association, 58(12): 1560.
稿件与作者信息
张 勇1,2
ZHANG Yong1,2
刘随心1
LIU Suixin1
刘随心, E-mail: lsx@ieecas.cn
曹军骥1,2
Cao Junji1,2
田 杰1,3
TIAN Jie
张 婷1
ZHANG Ting1
朱崇抒1
ZHU Chongshu
孙 健3
SUN Jian3
沈振兴3
SHEN Zhenxin3
基金项目: 科技部科技基础性工作专项(2013FY112700)
The Ministry of Science and Technology of China (2013FY112700)
出版历史
出版时间: 2018年9月14日 (版本2
参考文献列表中查看
地球环境学报
Journal of Earth Environment