研究论文 正式出版 版本 4 Vol 9 (6) : 557-568 2018
下载
青海湖黑马河黄土的高密度光释光测年
A high-density optically stimulated luminescence (OSL) dating at Heima He loess section in Qinghai Lake area
: 2018 - 08 - 14
: 2018 - 11 - 20
102 2 0
摘要&关键词
摘要:西风环流与亚洲季风交互控制下的青海湖流域,对气候变化响应敏感。该区广泛分布的黄土记录了古环境古气候信息,但其在不同时间尺度上的沉积模式和沉积连续性尚不明晰。本文以青海湖西南的黑马河黄土剖面(HMHW)为研究对象,通过高密度光释光(optically stimulated luminescence,OSL)测年,结合粒度、磁化率和色度指标探讨其环境演变特征。结果表明:(1)黑马河黄土的沉积模式以快速堆积为主,集中于较冷的末次冰消期(13—12 ka)和晚全新世(~2 ka);(2)早中全新世(11—4 ka)存在~7 ka的沉积间断;(3)黑马河黄土剖面(HMHW)的土壤粒度组分,以体积占68.68%的粉砂为主、砂次之,黏粒最少;整个剖面的平均粒径和亮度低值对应古土壤层、高值对应黄土层;磁化率的最大值在115 cm处为74.30×10-8 m3·kg-1,110 cm处的OSL年代为(1.52±0.16) ka,指示晚全新世(~2 ka)有古土壤发育。
关键词:关键词:高密度光释光测年;快速堆积;沉积间断;黑马河黄土剖面
Abstract & Keywords
Abstract: Background, aim, and scope Qinghai Lake (QHL), the largest saline lake in China, is located in the northeastern Qinghai-Tibetan Plateau (QTP), predominantly controlled by the interplay of the Asian monsoon and the westerlies. The widespread loess depositions of the QHL represent important environmental archives. It has been a focus of regional paleoenvironment and paleoclimate reconstruction on sub-orbital and millennial-scales. However, the loess accumulation usually accompanied by depositional hiatuses and erosion. Therefore, it is the prerequisite to determine the continuity of loess deposition before reconstruct the regional paleoenviromental evolution. In this study, we collected 12 samples to obtain the high-density Optically Stimulated Luminescence (OSL) chronology from a 260 cm thick loess section northwest to the previously published Heima He (HMH) loess section by Lu et al (2011). Meanwhile, the environmental implication of the common proxies in loess research, such as grain size, magnetic susceptibility and chroma, is discussed. Materials and methods The medium-sized (38—63 μm) quartz OSL single aliquot regenerative (SAR) dose protocol is used to acquire equivalent dose (De). Conventional tests set 260℃ as preheat temperature and 220℃ as cut-heat temperature. Environmental dose rates were determined using the inductively coupled plasma mass spectrometry (ICP-MS). The grain size, low frequency magnetic susceptibility and chroma (lightness, redness and yellowness) are measured at 5 cm interval. ResultsQuartz OSL ages reveal that the rapid loess sedimentation occurred during the late Glacial (13—12 ka) and in the late Holocene (~2 ka). An obvious accumulational hiatus, ~7 ka, from 11 ka to 4 ka was verified at HMHW loess section. The upper of 130 cm has an inverted chronosequence, 6 successive samples have near-identical ages and are clustered together indicating a rapid loess deposition. Mechanical components of grain size at HMHW section mainly consisted of silt with 50.94%—72.92%, 9.03%—36.91% of sand and 12.15%—18.05% of clay. The values of mean-grain size and lightness are coincided with the stratum of HMHW profile. Minimum is at the layer of palaeosol, on the contrary at loess layer. Maximum of magnetic susceptibility is 74.30×10-8 m3·kg-1 indicating that a pedogenesis process mainly at (1.52±0.16) ka. Discussion The episodic and discontinuous feature of loess deposition on a millennial time scale in QHL area has been confirmed. Compared with HMH loess section (Lu et al, 2011) at southeastern of HMHW, the loess depositions accompanied with palaeosol aggradation. The loess accumulation rate is varied with local terrain or erosive process. It is noteworthy that episodic loess accumulation and depositional hiatus have also been reported from the other profiles, at the adjacent Gonghe Basin and the western part of Chinese Loess Plateau (CLP). Conclusions (1) Consistent and rapid loess deposition period was recorded in both high-density OSL samples HMHW section and previous published OSL ages, which during the late Glacial and in the late Holocene. (2) It is reliable to reveal that the characteristics of loess deposition discontinuity are universal on the Tibetan Plateau. (3) The HMHW loess is sorted as sandy silt, indicating that it is deemed to be a product of dry and cold climate. Recommendations and perspectives It is necessary to acquire the high-density samples for the OSL dating to verify loess sedimentary continuity, when reconstructing the paleoenvironmental evolution process by loess deposition.
Keywords: high-density quartz OSL ages; rapid dust accumulation; depositional hiatus; Heima He loess section (HMHW)
青海湖作为我国最大的内陆封闭咸水湖,位于青藏高原东北缘,受西风环流与亚洲季风的交互控制,对气候变化响应敏感。青海湖湖泊沉积物因连续性好、沉积速率大、分辨率高和信息量丰富等特点,成为重建古环境变化的优质载体,已有大量利用湖相沉积物反演青海湖古气候古环境的研究成果发表(张彭熹等,1994;沈吉等,2001;刘兴起等,2003;Shen et al,2005;Yu,2005;An et al,2012)。可靠的年代框架是探究区域古环境演变的标尺。目前,由于高原湖泊沉积物存在明显的“碳库效应”(Hou et al,2012;Mischke et al,2013;E et al,2018),基于水生植物残体或总有机碳进行14C测年得到的结果偏老(Beukens et al,2004),无法准确解读该区域环境演变记录。因而学者们将目光转向广泛发育且测年较为可靠的风成沉积物。
青海湖流域的风成沉积物以风成沙丘和黄土为主,其中黄土主要分布在青海湖南岸和西岸的湖滨阶地、以及湖周的河流阶地和冲洪积平原之上,平均堆积厚度1 m左右。风成沉积物中广泛存在石英、长石等矿物颗粒,在埋藏前通常经过了充分的阳光照射,其释光信号归零较好,加之风成黄土的释光信号灵敏度较高,能够满足实验测量的需求(Kang et al,2013),故主要采用光释光(optically stimulated luminescence,OSL)测年方法确定风成沉积物的年代。
近年来,青海湖风积物的大量研究逐步开展,图1中的五角星(HLL:陈发虎等,1991;FS05-36:Madsen et al,2008;UIC1657:Rhode et al,2010;HMH1,BHPA,HHDL-29.3 km:Lu et al,2011;ZYC,HK2,ERLJ1,JXG1,KTSD:Liu et al,2012;KTN,KTS,HYW,KTE:Lu et al,2015;XL,XPS:常秋芳等,2016)展示了已研究的青海湖湖东沙丘和湖南岸风尘黄土剖面。一系列研究结果表明:青海湖黄土自末次冰消期开始堆积(陈克造等,1990;Rhode et al,2010;Lu et al,2011;Liu et al,2012;鄂崇毅等,2013;Stauch,2015)。Lu et al(2011)在青海湖东岸、西岸、南岸和西南岸的六个典型风成剖面中获取了24个OSL测年结果,并结合粒度、磁化率、有机质含量和地球化学元素等指标,发现~13 ka、10—9.1 ka、8.8—8.4 ka有效湿度低、为风沙活动期。Lu et al(2015)通过对青海湖东岸沙丘的研究发现,风成沙沉积于12.5 ka、11.2 ka、~9 ka、~8.5 ka、5.5 ka、2.6(2.4) ka和1.0(0.9) ka,结合多个环境指标的变化指示了末次冰期的风沙活动强烈,其与亚洲夏季风减弱有关。此外,鹿化煜等(2006a)对黄土高原西北—东南方向上的环县M-2004、环县H-2004、西峰3-2004三个黄土剖面进行高密度OSL测年,发现存在~5 ka的沉积间断,而青藏高原海拔更高、风速更强、植被盖度更低,黄土连续性可能更差。鉴于前人研究的青海湖流域剖面年代分辨率相对较低、年代控制点较少,风成沉积剖面是否存在沉积间断尚不清楚。因此,在青海湖流域利用黄土沉积物探讨环境变化时,进行高密度OSL测年、检验沉积连续性十分必要。本文主要目的是通过对黑马河(HMHW)黄土剖面进行高密度OSL测年、检验其连续性,同时结合粒度、磁化率、色度等指标分析其环境演变特征。
1   研究区概况及样品采集
青海湖流域(36°15′—38°20′N,97°50′—101°20′E,3193 m)位于青藏高原东北部,地处常年西风带、东部季风区和青藏高原季风区的交汇地带。湖泊面积约为4400 km2,流域总面积为29661 km2左右(青海省地方志编纂委员会,1998)。整个流域呈西北—东南走向,地形呈西北高东南低,东至日月山、西至橡皮山、北至大通山、南至青海南山,湖岸发育多级阶地,湖盆地带为平坦的冲积平原,属于封闭型内陆盆地。入湖河流主要有7条(布哈河、沙柳河、泉吉河、哈尔盖河、甘子河、黑马河和倒淌河)约占全流域地表径流量的80%,河网空间分布不均,西北稠密、东南稀疏(图1)。该流域属高原大陆性气候,夏秋温凉、冬春寒冷,暖季短、冷季长。植被以高寒草甸(草原)、高寒灌丛为主。
黑马河黄土剖面(HMHW)(36°44′20.79″N,99°45′34.17″E,3223 m)位于青海湖西南部的黑马河乡附近,该剖面位于Lu et al(2011)研究的HMH剖面西北部,以示区别命名该剖面为HMHW。其周围植被以矮生嵩草、芨芨草为主(图1a)。如图1b所示,剖面顶部30 cm为高寒草甸植被覆盖下的现代土壤层,以暗棕或浅棕色粗粉砂为主,虫洞发育、质地较软、具有较为疏松的团粒状结构,分布较多草根根系;30—85 cm为弱发育的古土壤,质地较硬、呈稍紧实的团块状结构,并存在白色假菌丝体;85—150 cm为古土壤,颜色略偏红,质地坚硬、具有紧实的团块状结构,含较多孔隙和少量假菌丝体;150—260 cm为黄土,质地逐渐疏松;260 cm以下为砾石层,砾石磨圆度较高。土壤散样按5 cm间距采集了48个;另外以20 cm为间隔采集OSL样12个。


图1   青海湖风成剖面的分布
Fig.1 The location of aeolian dust sections in Qinghai Lake area
黑马河黄土剖面周围的植被和地形地貌(a)和黑马河黄土剖面(b)。The vegetation, terrain (a) and stratum (b) of HMHW loess profile.
2   粒度、磁化率和色度的测量
对土壤散样进行粒度、磁化率和色度变化分析,其中用粒度表征土壤质地,磁化率和色度反映土壤发育程度。以上实验的测量均在青海省自然地理与环境过程重点实验室完成。粒度采用经典的前处理方法(鹿化煜和安芷生,1997)后,在英国马尔文公司制造的Mastersizer 2000激光粒度仪上进行测量,其测量范围为0.02—2000 μm,最终分析其不同颗粒组成特征。磁化率的测试采用英国Bartington公司生产的MS2型双频率磁化率仪完成,由三次低频磁化率值的平均值与两次背景值的平均值之差计算得到低频LF(0.465 KHZ ±1%)质量磁化率。色度指标由日本生产的美能达分光色度仪测量,仪器自动对亮度、红度和黄度三次测量值取平均,保证误差<0.1。
3   石英OSL测年
3.1   样品前处理操作
OSL测年在青海省自然地理与环境过程重点实验室-释光年代学室进行。鉴于土壤样品粒度组分以粉砂为主,等效剂量(De)获取采用中颗粒(38—63 μm)石英单片再生剂量法(single aliquot regenerative dose protocol,简称SAR)(Murray and Wintle,2000;Wintle and Murray,2006),通过氟硅酸浸泡提纯石英。测试仪器为Risø TL/OSL-DA-20-C/D型热/光释光仪,该仪器辐照源为人工β源90Sr/90Y,每秒辐照剂量率为(0.130±0.004) Gy。
环境剂量率由电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry,ICP-MS)获取的铀(238U)、钍(232Th)、钾(40K)元素含量进行计算,再根据Guérin et al(2012)发表的转换参数计算干剂量率,中颗粒石英α辐射的有效系数采用(0.035±0.003)(Lai et al,2008),并考虑了宇宙射线对剂量率的贡献(Prescott and Hutton,1994)。如表1所示:环境剂量率的范围为(3.14±0.59)—(3.76±0.29) Gy·ka-1,在HMHW黄土剖面中各元素含量相对均一、物质来源较为稳定。鉴于青海湖流域降水量较小,年均值<400 mm,且前人在该区域黄土的OSL年代计算中含水量采用7%±5%(Liu et al,2012;E et al,2015),所以为保持一致和便于对比,本文也采用该含水量进行年代计算。
3.2   释光特征
对样品HMHW-5进行预热温度坪实验,发现预热温度在180—280℃时,De值较一致(平均值为(7.52±0.27) Gy),有一个明显的坪区;循环比在0.9—1.1,基本接近于1;零剂量恢复在±4%,稳定于0—2%(图2)。当预热温度在260℃时,De值和零剂量恢复误差较小且循环比稳定在0.9—1.1,所以最终全部样品采用260℃为天然和再生剂量释光信号测量的预热温度、220℃为试验剂量释光信号测量的预热温度来获取De值。再以黑马河黄土剖面HMHW-17样品为例,系统分析OSL信号衰减曲线(图3a)和生长曲线(图3b)发现:释光信号较强且在前2 s快速衰减到背景值,呈现出典型的石英快速组分信号特征;生长曲线是由每个测片上的4个再生剂量点插值建立,通过指数拟合得到De值误差。同时,12个HMHW释光样品的De值分布概率密度(图4)显示,均呈高斯正态分布,表明以14/15个测片的平均De值作为该样品的De值是较为准确的。
为了检验预热条件对所有样品的适用性,对获得的12个释光样在260℃和220℃预热条件下De值进行了等效剂量恢复实验(各个样品测试3个片子),发现测得的De值和给定的De值比值介于0.9—1.1,说明选取的预热条件是合适的,该预热条件下获得的De值是稳定可靠的。


图2   HMHW-5的预热坪实验
Fig.2 Preheat plateau of the sample HMHW-5




图3   HMHW-17的衰减曲线(a)和生长曲线(b)
Fig.3 Decay curve (a) and growth curve (b) of the sample HMHW-17
























图4   HMHW释光样的等效剂量分布概率密度图
Fig.4 Probability density distribution of De from HMHW OSL samples
表1   黑马河黄土剖面的石英释光年代结果
样品号Sample
ID
深度
Depth
/cm

U
/ppm

Th
/ppm

K
/%
年剂量率Dose rate
/(Gy·ka-1)
含水量
Water content
/%
测片 Discs等效剂量
Equivalent dose /Gy
年代
Age
/ka
HMHW 2201.87±0.38.25±0.61.78±0.043.14±0.597±5155.58±0.161.78±0.34
HMHW 5502.29±0.412.14±0.71.71±0.043.47±0.357±5157.79±0.352.24±0.25
HMHW 7702.43±0.48.87±0.61.70±0.043.23±0.317±5157.83±0.422.42±0.26
HMHW 9902.57±0.49.65±0.61.73±0.043.35±0.307±5146.27±0.271.87±0.18
HMHW 111102.21±0.49.68±0.61.79±0.043.30±0.287±5155.02±0.281.52±0.16
HMHW 131302.30±0.410.46±0.71.77±0.043.35±0.287±5155.49±0.141.64±0.14
HMHW 151502.06±0.49.60±0.61.87±0.043.31±0.287±51414.57±0.624.41±0.41
HMHW 171702.52±0.410.72±0.71.70±0.043.35±0.287±51438.85±1.9811.59±1.12
HMHW 191902.83±0.412.04±0.71.73±0.043.56±0.297±51544.22±2.0812.43±1.16
HMHW 212103.01±0.411.60±0.71.80±0.043.63±0.297±51447.81±1.9213.17±1.17
HMHW 232302.66±0.411.69±0.71.82±0.043.55±0.287±51447.08±1.8513.26±1.18
HMHW 252502.90±0.412.34±0.71.93±0.043.76±0.297±51449.65±1.5713.20±1.12
4   结果与讨论
4.1   粒度、磁化率和色度指标的意义分析
风成沉积研究中广泛运用粒度、磁化率和色度这三个环境指标,分析地质历史时期的风沙活动强度与区域有效湿度变化(赵存法等,2009;Lu et al,2011;Liu et al,2012;Chen et al,2016)。黄土粒度可以反映风力的强弱(Lu and An,1998),也可以反映源区的远近(Ding et al,1999)。整个黑马河黄土剖面粒度组分以粉砂为主(体积约占68.68%,介于50.94%—72.92%);砂次之,平均含量约占16.48%;黏粒最少约14.84%(图5)。沉积物粉砂颗粒>30%时的黄土称为砂黄土(李保生等,1998),由此认为HMHW黄土剖面为砂黄土沉积。如图6所示,整个剖面平均粒径的均值为30.88 μm,变化幅度介于22.61—52.81 μm,其最小值在古土壤层,最大值出现在底部的黄土层。黄土磁化率能够指示古气候的温湿程度、成壤作用、夏季风强度及环境演变特征等,磁化率值低,表明气候干冷、夏季风弱、成壤作用弱;反之,磁化率值高,气候暖湿、夏季风强、成壤作用强(邓成龙等,2007)。该剖面的磁化率值变化范围为31.55×10-8—74.30×10-8 m3·kg-1,平均值为42.70×10-8 m3·kg-1,整个剖面的黄土-古土壤层与磁化率值对应较好且波动明显(图6),黄土层磁化率值低,古土壤层磁化率值高,这与Lu et al(2011)、鄂崇毅等(2013)、Lu et al(2015)在青海湖地区的研究结果相一致。色度指标中的亮度主要受控于有机质含量,有机质含量越高,土壤亮度越低;红度主要受控于赤铁矿含量,赤铁矿含量越高,土壤红度越高;黄度主要受控于针铁矿含量,针铁矿含量越高,土壤黄度越高(杨胜利等,2001)。在HMHW剖面中(图6),古土壤层的亮度、红度和黄度都较低,反之三个指标的较高值出现在黄土层中,这一现象与黄土高原地区相反,也与QH2000钻孔记录的湖相地层红度和黄度呈相反关系(鄂崇毅等,2013)。
4.2   OSL年代结果与青海湖黄土快速堆积及沉积间断
黑马河260 cm黄土剖面(HMHW)的年代框架由12个年代控制点建立,自上而下依次在20 cm、50 cm、70 cm、90 cm、110 cm、130 cm、150 cm、170 cm、190 cm、210 cm、230 cm、250 cm处采集OSL样品。从图6、图7的年代结果明显看出:HMHW剖面底部150—250 cm的6个年代结果上新下老;而130 cm以上的年代序列出现倒置现象,70 cm处的年代为(2.42±0.26) ka,110 cm为(1.52±0.16) ka,如果将年代结果的误差值取2σ,剖面130 cm以上年代集中在~2 ka,指示了明确的快速堆积过程(Wang et al,2015),另外在野外观察到剖面含孔隙、虫洞等,不排除生物扰动作用的影响(Bateman et al,2003)。
综合HMHW高密度OSL测年结果,发现:该剖面存在明显的两个快速沉积期和一个沉积间断(图7)。即在末次冰消期((13.26±1.18)—(11.59±1.12) ka)沉积了大约80 cm厚的黄土,这与前人认为的青海湖黄土快速堆积主要发生在末次冰消期一致(Lu et al,2011;Liu et al,2012;Stauch,2015)。HMHW剖面130 cm以上的沉积物年代集中在晚全新世((2.42±0.26)—(1.52±0.16) ka),指示了晚全新世黄土的快速堆积,其中弱发育的古土壤层加积在黄土地层上,这与鄂崇毅等(2018)、林永崇等(2012)发现的青海湖流域和安多地区高山草甸土“风尘加积型”发育模式相似。但从全新世土壤的磁化率最高值来看,HMHW剖面的成壤强度远低于黄土高原,HMHW磁化率最高值为74.30×10-8 m3·kg-1,而黄土高原西部HSP黄土剖面高达100×10-8 m3·kg-1左右(Wang et al,2015),其南部LC剖面最高值约230×10-8 m3·kg-1(丁敏等,2010),其中部HX剖面高达130×10-8 m3·kg-1 左右、XF剖面最高值约200×10-8 m3·kg-1、东部LT剖面约220×10-8 m3·kg-1(鹿化煜等,2006b)。
HMHW黄土剖面在早中全新世((11.59±1.12) ka和(4.41±0.41) ka)存在~7 ka的沉积间断,分析此原因:该剖面所处位置拔湖约28 m,且在野外观察时未发现明显的潜育化现象,可能间接指示出末次冰消期及全新世适宜期的高湖面低于该剖面当时所在的高度(Liu et al,2015),故推测作为气下沉积的HMHW黄土没有受到水蚀影响,可能与局地风蚀作用有关。与邻近的东南部HMH剖面对比,Lu et al(2011)测得其80 cm和50 cm处年代分别为(8.68±0.55) ka和(2.92±0.22) ka,可能记录了~5 ka的沉积间断或极低的沉积速率,这一时期剖面以砂古土壤为主,指示气候呈现暖湿状态。而本文HMHW剖面地层年代在150 cm和70 cm处分别为(4.41±0.41) ka和(2.42±0.26) ka,可能也记录了~2 ka的沉积间断,期间磁化率值变小、风尘堆积、气候趋于干冷。尽管HMHW与HMH两个剖面相距较近,但各自的沉积速率有明显差异,其原因可能为局地地形变化或后期侵蚀所致。
除了上述的青海湖HMHW黄土剖面、HMH黄土剖面存在沉积间断以外,其他学者在青藏高原东北缘和黄土高原上也发现了这种现象,如:青海湖西岸的石乃亥黄土剖面(11—8.4 ka和4.7—1.8 ka)、邻近的共和盆地羊曲砂黄土剖面(7.1—2 ka)(闫文亭等,2018)、黄土高原西部的西宁土巷道黄土剖面(30—20 ka)(Buylaert et al,2008)、黄土高原黄土剖面(约5—4 ka)(Steven et al,2007;鹿化煜等,2006a)均存在明显的沉积间断。因此,基于黄土重建区域古环境演变时,采用高密度OSL测年十分必要。
HMHW剖面地层记录了黄土的快速堆积和沉积间断,表明青海湖黄土沉积在千年时间尺度上为“事件性沉积”。Wang et al(2015)在距此140 km的HSP剖面(36°27′N,102°35′E,1962 m)也发现了类似的事件堆积,但有区别的是HSP剖面黄土快速堆积主要对应于北大西洋H事件,青海湖HMHW黄土的快速堆积与冷事件的响应并不明显。这可能与海拔、地形地貌、气候、植被差异较大有关,导致风尘堆积方式也可能不同。


图5   黑马河黄土粒度组成
Fig.5 Mechanical components of HMHW loess grain size


图6   黑马河黄土剖面的石英OSL年代、粒度组成、平均粒径、磁化率和色度
Fig.6 Quartz OSL ages, grain size components, mean grain size, magnetic susceptibility and chroma of HMHW section


图7   黑马河黄土剖面的石英OSL年代及粒度组成、磁化率
Fig.7 Quartz OSL ages and grain size components, magnetic susceptibility of HMHW section
(两个矩形代表黄土快速沉积的时期;虚线是HMHW剖面的沉积间断。Two rectangles represent the period of loess deposition rapidly; the dashed line is depositional hiatus at HMHW section.)
5   结论
(1)青海湖黑马河黄土(HMHW)剖面快速堆积于相对冷气候背景下的末次冰消期(13.26±1.18)—(11.59±1.12) ka和晚全新世(2.42±0.26)—(1.52±0.16) ka,这与已有结果的青海湖黄土快速堆积期一致。
(2)通过高密度OSL测年,揭示了HMHW剖面在早中全新世((11.59±1.12)—(4.41±0.41) ka)存在~7 ka的沉积间断,黄土的沉积间断在青藏高原可能具有普遍性,因而在青藏高原利用黄土重建区域古环境演变时,建议采用多剖面高密度OSL测年方法。
(3)HMHW黄土剖面属于砂黄土沉积。古土壤层的平均粒径和亮度值变化趋势相同,出现最小值,分别为22.61 μm和53.26;磁化率最大值达74.30×10-8 m3·kg-1。黄土层的平均粒径最大,约52.81 μm,红度和黄度较高且呈现同步变化趋势。
常秋芳, 卢宝良, 赖忠平, 等. 2016. 青海南山风成沉积光释光年代学研究[J]. 盐湖研究, 24(2): 54-61. [Chang Q F, Lu B L, Lai Z P, et al. 2016. The Optically Stimulated Luminescence Study of Aeolian Deposits in Qinghai South Mountain [J]. Journal of Salt Lake Research, 24(2): 54-61.]
陈发虎, 汪世兰, 张唯信, 等. 1991. 青海湖南岸全新世黄土剖面、气候信息及湖面升降探讨[J]. 地理科学, 11(1): 76-85. [Chen F H, Wang S L, Zhang W X, et al. 1991. The loess profile at south bank, climatic information and lake-level fluctuations of Qinghai Lake during the Holocene [J]. Scientia Geographic Sinica, 11(1): 76-85.]
陈克造, Bowler J M, Kelts K. 1990. 四万年来青藏高原的气候变迁[J]. 第四纪研究, 10(1): 21-31. [Chen K Z, Bowler J M, Kelts K. 1990. Palaeoclimatic evolution within the Qinghai-Xizang (Tibet) Plateau in the last 40 000 years [J]. Quaternary Sciences, 10(1): 21-31.]
邓成龙, 刘青松, 潘永信, 等. 2007. 中国黄土环境磁学 [J]. 第四纪研究, 27(2): 193-209. [Deng C L, Liu Q S, Pan Y X, et al. 2007. Environmental magnetism of Chinese loess-paleosol sequences [J]. Quaternary Science, 27(2): 193-209.]
丁敏, 庞奖励, 黄春长, 等. 2010. 全新世黄土-古土壤序列色度特征及气候意义——以关中平原西部梁村剖面为例[J]. 陕西师范大学学报(自然科学版), 38(5): 92-97. [Ding M, Pang J L, Huang C C, et al. 2010. Chroma characteristics and its climatic significance in Holocene loess-paleosol sequence ——A case study of the Holocene Liangcun profile in the western Guanzhong basin [J]. Journal of Shaanxi Normal University (Natural Science Edition), 38(5):92-97. ]
鄂崇毅, 曹广超, 侯光良, 等. 2013. 青海湖江西沟黄土记录的环境演变[J]. 海洋地质与第四纪地质, 33(4): 193-200. [E C Y, Cao G C, Hou G L, et al. 2013. The environmental change recorded in JiangXigou loess sections in Qinghai Lake region [J]. Marine Geology & Quaternary Geology, 33(4): 193-200.]
鄂崇毅, 张晶, 吴成永, 等. 2018. 青海湖流域草甸土光释光年代学研究[J]. 土壤学报, 55(6). DOI: 10.11766/trxb201801090021. [E C Y, Zhang J, Wu C Y, et al. 2018. Study of chronology of the meadow soil in the Qinghai Lake basin by means of optically stimulated luminescence [J]. Acta Pedologica Sinica, 55(6). DOI: 10.11766/trxb201801090021.]
李保生, 靳鹤龄, 吕海燕, 等. 1998. 150 ka以来毛乌素沙漠的堆积与变迁过程[J]. 中国科学(D辑), 2(1): 85-90. [Li B S, Jin H L, LÜ H Y, et al. 1998. Processes of the deposition and vicissitude of Mu Us Desert, China since 150 ka B.P [J]. Science in China (Series D), 2(1): 85-90.]
林永崇, 冯金良, 张继峰, 等. 2012. 藏北高原安多地区高山草甸土的母质成因及其成土模式[J]. 山地学报, 30(6): 709-720. [Lin Y C, Feng J L, Zhang J F, et al. 2012. Origin of parent materials and pedogenesis of alpine meadow soils in Amdo, Northern Tibetan Plateau [J]. Journal of Mountain science, 30(6): 709-720.]
刘兴起, 王苏民, 沈吉. 2003. 青海湖QH-2000钻孔沉积物粒度组成的古气候古环境意义[J]. 湖泊科学, 15(2): 112-117. [Liu X Q, Wang S M, Shen J. 2003. The grainsize of the core QH-2000 in Qinghai Lake and its implication for paleoclimate and paleoenvironment [J]. Journal of Lake Sciences, 15(2): 112-117.]
鹿化煜, 安芷生. 1997. 前处理方法对黄土沉积物粒度测量影响的实验研究[J]. 科学通报, 42(23): 2535-2538. [Lu H Y, An Z S. 1997. Experimental study of pretreatment methods on the measurement of grain size distribution of loess sediment [J]. Chinese Science Bulletin, 42(23): 2535-2538.]
鹿化煜, Steven T, 弋双文, 等. 2006a. 高密度光释光测年揭示的距今约15~10 ka黄土高原侵蚀事件[J]. 科学通报, 51(23): 2767-2772. [Lu H Y, Steven T, Yi S W, et al. 2006a. The erosion events of Chinese Loess Plateau about 15~10 ka based on high-resolution Optically Stimulated Luminescence dating [J]. Chinese Science Bulletin, 51(23): 2767-2772.]
鹿化煜, 周亚利, Mason J, 等. 2006b. 中国北方晚第四纪气候变化的沙漠与黄土记录——以光释光年代为基础的直接对比 [J]. 第四纪研究, 26(6): 888-894. [Lu H Y, Zhou Y L, Mason J, et al. 2006b. Late quaternary climatic changes in northern China — new evidences from sand dune and loess records based on Optically Stimulated Luminescence dating [J]. Quaternary Sciences, 26(6): 888-894.]
青海省地方志编纂委员会. 1998. 青海省志:青海湖志[M]. 西宁: 青海人民出版社: 74-78. [Editorial Board of Local Chronicles of Qinghai Province. 1998. Qinghai Province local chronicles: Qinghai Lake records [M]. Xining: Qinghai People’s Publishing House: 74-78.]
沈吉, 张恩楼, 夏微岚. 2001. 青海湖近千年来气候环境变化的湖泊沉积记录[J]. 第四纪研究, 21(6): 508-513. [Shen J, Zhang E L, Xia W L. 2001. Records from lake sediments of the Qinghai Lake to mirror climatic and environmental changes of the past about 1000 years [J]. Quaternary Sciences, 21(6): 508-513.]
闫文亭, 鄂崇毅, 孙永娟, 等. 2018. 基于光释光测年的共和盆地风沙活动历史研究[J]. 盐湖研究, 26(4). [Yan W T, E C Y, Sun Y J, et al. 2018. Study on the History of Eolian Sand Activities in Gonghe Basin based on OSL dating [J]. Journal of Salt Lake Research, 26(4).]
杨胜利, 方小敏, 李吉均, 等. 2001. 表土颜色和气候定性至半定量关系研究 [J]. 中国科学D辑: 地球科学, 31(B12): 175-181. [Yang S L, Fang X M, Li J J, et al. 2001. Transformation functions of soil color and climate [J]. Science in China Series D: Earth Sciences, 31(B12): 175-181.]
张彭熹, 张保珍, 钱桂敏, 等. 1994. 青海湖全新世以来古环境参数的研究[J]. 第四纪研究, 14(3): 225-238. [Zhang P X, Zhang B Z, Qian G M, et al. 1994. The study of paleoclimatic parameter of Qinghai Lake since Holocene [J]. Quaternary Sciences, 14(3): 225-238.]
赵存法, 鹿化煜, 周亚利, 等. 2009. 青海湖地区冰消期以来气候变化的黄土记录[J]. 高校地质学报, 15(1): 135-140. [Zhao C F, Lu H Y, Zhou Y L, et al. 2009. Palaeoclimate changes recorded by loess deposit around Qinghai Lake (Northeastern Qinghai-Tibetan Plateau) since Last deglaciation [J]. Geological Journal of China Universities, 15(1): 135-140.]
An Z S, Colman S M, Zhou W J, et al. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka [J]. Scientific Reports, 2(8): 619. DOI: 10.1038/srep00619.
Bateman M D, Thomas D S G., Singhvi A K. 2003. Extending the aridity record of the Southwest Kalahari: current problems and future perspectives [J]. Quaternary International, 111(1): 37-49.
Beukens R P, Gove H E, Litherland A E, et al. 2004. The old carbon project: how old is old [J]. Nuclear Instruments and Methods in Physics Research, 223-224(2): 333-338.
Buylaert J P, Murray A S, Vandenberghe D, et al. 2008. Optical dating of Chinese loess using sand-sized quartz: Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau [J]. Quaternary Geochronology, 3: 99-113.
Chen F H, Wu D, Chen J H, et al. 2016. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies [J]. Quaternary Science Reviews, 154: 111-129.
Ding Z L, Sun J M, Rutter N W, et al. 1999. Changes in sand content of loess deposits along a north-south Transect of the Chinese loess plateau and the implications for desert variations [J]. Quaternary Research, 52: 56-62.
E C Y, Lai Z P, Hou G L, et al. 2015. Age determination for a Neolithic site in northeastern Qinghai-Tibetan Plateau using a combined luminescence and radiocarbon dating [J]. Quaternary Geochronology, 30: 411-415.
E C Y, Sun Y J, Liu X J, et al. 2018. A comparative study of radiocarbon dating on terrestrial organisms and fish from Qinghai Lake in the northeastern Tibetan Plateau, China [J]. The Holocene, 28(11): 1712-1719.
Guérin G, Mercier N, Nathan R, et al. 2012. On the use of the infinite matrix assumption and associated concepts: A critical review [J]. Radiation Measurements, 47(9): 778-785.
Hou J Z, D Andrea W J and Liu Z. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau [J]. Quaternary Science Reviews, 48: 67-79.
Kang S G, Wang X L, Lu Y C. 2013. Quartz OSL chronology and dust accumulation rate changes since the Last Glacial at Weinan on the southeastern Chinese Loess Plateau [J]. Boreas, 42: 815-829.
Lai Z P, Zöller L, Fuchs M, et al. 2008. Alpha efficiency determination for OSL of quartz extracted from Chinese loess [J]. Radiation Measurements, 43(2/6): 767-770.
Liu X J, Lai Z P, Yu L P, et al. 2012. Luminescence chronology of aeolian deposits from the Qinghai Lake area in the Northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications [J]. Quaternary Geochronology, 10: 37-43.
Liu X J, Lai Z P, Madsen D, et al. 2015. Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai-Tibetan Plateau [J]. Journal of Quaternary Science, 30(3): 245-257.
Lu H Y, An Z S. 1998. Paleoclimatic significance of grain size of loess-paleosol sequences of central China [J]. Science in China (Series D), 41 (6): 626-631.
Lu H Y, Zhao C F, Mason J, et al. 2011. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms [J]. The Holocene, 21(2): 297-304.
Lu R J, Jia F F, Gao S Y, et al. 2015. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai-Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 430: 1-10.
Madsen D B, Ma H Z, Rhode D, et al. 2008. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau [J]. Quaternary Research, 69(2): 316-325.
Mischke S, Weynell M, Zhang C, et al. 2013. Spatial variability of 14C reservoir effects in Tibetan Plateau lakes [J]. Quaternary International, 313-314: 147-155.
Murray A S, Wintle A G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol [J]. Radiation Measurements, 32(1): 57-73.
Prescott J R, Hutton J T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations [J]. Radiation Measurements, 23(2/3): 497-500.
Rhode D, Ma H Z, Madsen D B, et al. 2010. Paleoenvironmental and archaeological investigations at Qinghai Lake, western China: geomorphic and chronometric evidence of lake level history [J]. Quaternary International, 218(1/2): 29-44.
Shen J, Liu X Q, Wang S M, et al. 2005. Paleoclimatic changes in the Qinghai Lake area during the last 18000 years [J]. Quaternary International, 136(1): 131-140.
Stauch G. 2015. Geomorphological and palaeocliamte dynamics recorded by the formation of Aeolian archives on the Tibetan Plateau [J]. Earth-Science Reviews, 150(2): 393-408.
Steven T, Armitage S J, Lu H Y, et al. 2007. Examining the potential of high sampling resolution OSL dating of Chinese loess [J]. Quaternary Geochronology, 2(1): 15-22.
Wang X Y, Yi S W, Lu H Y, et al. 2015. Aeolian process and climatic changes in loess records from the northeastern Tibetan Plateau: Response to global temperature forcing since 30 ka [J]. Paleoceanography, 30(6): 612-620.
Wintle A G, Murray A S. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols [J]. Radiation Measurements, 41(4): 369-391.
Yu J Q. 2005. Lake Qinghai, China: a multi-proxy investigation on sediment cores for the reconstructions of paleoclimate and paleoenvironment since the Marine Isotope Stage 3 [D]. Darmstadt: Technical University of Darmstadt.
稿件与作者信息
张 晶1
ZHANG Jing1
鄂崇毅1, 2*
E Chongyi1, 2*
鄂崇毅,E-mail: echongyi@163.com
赵亚娟1
ZHAO Yajuan1
青海省科技厅自然科学基金项目(2017-ZJ-901);国家自然科学基金项目(41761042,41361047);中国科学院西部之光青年学者A类项目(CAS-901);2017年青海省“高端创新人才千人计划”项目
Natural Science Foundation of Qinghai Provincial Science and Technology Department (2017-ZJ-901); National Natural Science Foundation of China (41761042, 41361047); Type A Program for Young Scholar of Western Light Foundation of Chinese Academy of Sciences (CAS-901); 2017 Thousand Talents Program of Qinghai Province
出版历史
出版时间: 2018年11月20日 (版本4
参考文献列表中查看
地球环境学报
Journal of Earth Environment