研究论文 正式出版 版本 5 Vol 9 (6) : 527-540 2018
下载
长江三角洲晚第四纪陆-海交互地层的光释光年代学研究
Optical dating of the land-sea interaction deposits of the Yangtze River delta since the Late Quaternary
: 2018 - 06 - 15
: 2018 - 09 - 27
129 2 0
摘要&关键词
摘要:长江三角洲地层的年代学研究对探讨晚第四纪以来我国东部沿海地区陆海交互作用历史以及海岸地貌的形成与演化具有重要价值。本研究选择长江三角洲YZ07和EGQD14两支钻孔开展系统光释光(optically stimulated luminescence,OSL)测年研究,总结前期已发表的50个年代数据并收集整理该区域相关钻孔的年代地层资料,探讨在可靠的年代框架约束下晚第四纪长江三角洲沉积地层演变特征,取得了以下几点认识:(1)在长江三角洲地区,常规OSL测年较细石英颗粒OSL测年效果较为理想;对粗颗粒石英,若存在长石包裹体对石英OSL信号的影响,建议用脉冲释光测年(POSL)技术加以解决。(2)以YZ07孔为例,14C测年和OSL测年结果对比表明在三角洲海岸地区,14C测年方法建立的年代地层框架需要谨慎对待,建议在此区域开展年代地层学研究可以尝试将两种测年方法结合使用,以确保年代地层框架的准确和可靠。(3)针对争议较大的MIS3阶段沉积环境问题,EGQD14孔给出了新的年代学证据,认为MIS3阶段(约30—50 ka)长江三角洲可能是陆地河流相沉积环境为主导,这也得到了区域相邻的几支钻孔沉积记录的佐证。(4)两支钻孔从年代学角度证实了前人关于末次盛冰期(Last Glacial Maximum,LGM)以来长江三角洲发育下切河谷的沉积学判识和地层学论断。此外,多钻孔的年代地层学特征也验证了全新世时段海平面变化控制下的长江三角洲及海岸演变的时空动态。
关键词:晚第四纪;长江三角洲;陆-海交互沉积地层;石英OSL测年
Abstract & Keywords
Abstract: Background, aim, and Scope Chronology is vital for studying the Late Quaternary coastal geomorphology and the land-sea interaction. In this study, we aimed to analyze the chronological characteristics of sediments in the Yangtze River delta based on the dataset of collections from our previous two cores’ sedimentary records and from other cores’ records recently reported in the adjacent areas. We attempt to illustrate the spatiotemporal features of the Yangtze River delta sedimentary evolution since MIS3 in the scope of chronostratigraphic investigations. Materials and methods In current study, we synthesized several chronological sequences according to the dataset of 50 ages from our previous published two cores (YZ07 and EGQD14) in the Yangtze River delta together with a few ages from other cores in the adjacent areas. Each age determined by quartz OSL dating techniques in the dataset is re-examined through the critical items, including characteristics of OSL signals, the IR-OSL depletion ratios, as well as the dose rates. Results Combing our recent studies with the relevant archives from the adjacent cores, we re-analyzed its sedimentary environment changes and coast dynamics since MIS3. It tended to show that a terrestrial-dominated environment happened at MIS3, a depositional hiatus occurred in LGM and variable patterns existed in the Holocene. Discussion Finer quartz grains, e.g., 4—11μm or 63—100 μm, would be much better than that of 100—200 μm in routine OSL dating, as the later might suffer from feldspar inclusions and resulted in OSL ages underestimation. Fortunately, the problem could be resolved by using the pulsed OSL dating technique. Comparison of the chronologies between OSL and radiocarbon dating, it shows that 14C ages are severe inversion against with the stratigraphic sequence while OSL ages display a well correlation with the strata. Therefore, we suggest to combining the two dating techniques for coastal-deltaic deposits. Conclusions New chronological evidence of core EGQD14 reveals that a fluvial dominated sedimentary environment happened during MIS3 (30—50 ka). Similar conclusions were set up on the records from the adjacent cores. A deposition hiatus occurred due to the decline of sea level and the formation of the incised valley during the LGM. In the Holocene, the incised-valley underwent stacking with the accommodation variation as sea level changes. In these processes, the Yangtze River delta initiated and gradually developed seaward. The accumulation rate is characterized with three periods, namely to be fast deposition in the early Holocene and in the late Holocene (~2 ka to 0 ka) but relative slow sedimentation during the mid-to-late Holocene. Recommendations and perspectivesHowever, the chronological framework of the strata in the Yangtze River delta beyond MIS3 is still poor so far. In the future, we should pay more attention to the sedimentary stratigraphy of the last glaciation using more newfangled luminescence dating techniques (e.g., K-feldspar and/or polymineral post-IR IRSL dating).
Keywords: Late Quaternary; Yangtze River delta; land-sea interaction; quartz OSL dating
长江三角洲是中华文明的发祥地之一,也是我国现代社会经济最繁荣与发达的地区之一。众多考古资料已表明新石器文化及古文明的兴衰与长江三角洲全新世以来的环境变化直接相关(Chen et al,2008;朱诚等,2016;Wang et al,2018a,2018b)。开展与人类活动密切相关的三角洲及海岸沉积环境演变研究具有重要意义。作为典型的陆海交互作用地带,长江三角洲对气候变化及全球/区域海面波动较为敏感(Kopp et al,2016;Nerem et al,2018)。晚第四纪以来长江三角洲的形成和演化以及海岸变迁历史一直是地球科学领域的研究热点之一(Zhang et al,2017)。前人早期从沉积学、地质学和地层学视角开展了大量的研究工作,主要贡献在于从宏观层面揭示了全新世时段的长江三角洲的兴起和演化(同济大学海洋地质系三角洲科研组,1978;李从先等,1980,2004;Li et al,2000;Hori et al,2001;林春明等,2016),但受当时的定年技术所限,年代学研究相对不足。长江三角洲的形成、演化及其机理研究,准确可靠的年代学证据是关键。加强区域沉积地层的年代学研究也一直是三角洲及海岸地貌变化过程中亟待解决的关键问题之一。
光释光测年(optically stimulated luminescence,OSL)作为第四纪地质年代学领域较为成熟的一种测年方法,已被广泛用于全球第四纪各类型沉积物定年(Wintle,2008)。该方法主要以沉积物中富含的石英或长石矿物为测年材料,测定其自从沉积埋藏前经历的最后一次曝光事件开始直至样品采集时所经历时间;在这一时间跨度内测年矿物因吸收宇宙射线、埋藏环境中放射性核素铀(U)、钍(Th)和钾(K)等提供的α、β和γ射线的辐照而积累释光信号。测年矿物的释光信号由释光仪测得其等效剂量(Bøtter-Jensen et al,2010),单位:Gy;沉积环境对测年矿物年辐照速率可以通过分析样品中放射性核素U、Th和K的含量、含水率、采样点经纬度、海拔位置以及深度等因素计算转换得到年剂量率(Prescott and Hutton,1994;Guérin et al,2011),单位:Gy/ka;最终以两者计算出沉积物OSL年龄(Aitken,1998)。国际上对陆架-海岸和三角洲沉积物OSL测年研究已经有许多研究报道(Madsen et al,2005;Mauz et al,2010;Shen et al,2015;Lamothe,2016;Chamberlain et al,2017),这为解译海岸地貌过程和成因提供了可靠的年代框架,客观地促进了对全球晚第四纪时段的海岸地貌(包括三角洲)的形成和演化研究。相比较而言,释光测年在我国海岸和三角洲地区应用研究则处于刚兴起阶段,且研究尺度多集中在全新世时段(Wang et al,2015,2018a,2018b;Sugisaki et al,2015;Gao et al,2016,2017,2018;Li et al,2017;Nian et al,2018a,2018b;年小美和张卫国,2018)。对于亟需厘定年代框架的晚第四纪较老沉积地层,因缺少年代学研究,许多有争议的沉积环境问题,如MIS3阶段海侵问题(杨怀仁和陈西庆,1985;施雅风和于革,2003;杨达源等,2004;于振江等,2005;于革等,2016),迄今尚未解决。
本文主要对近年来在长江三角洲海岸平原地区开展的2支钻孔(YZ07孔和EGQD14孔)的释光年代学研究工作进行简要梳理和介绍,并收集整理研究区相邻钻孔地层的年代地层工作(图1),构建长江三角洲晚第四纪以来的年代框架及分析其沉积环境的演变过程,希望能为后期释光测年方法在我国东部沿海类似沉积环境的应用和研究提供参考。


图1   长江三角洲地理区位和相关钻孔位置(据Gao et al(2018)改绘)
Fig.1 Location of the Yangtze River delta and the relevant cores (modified from Gao et al (2018))
1   研究材料与测年流程
本研究选取了长江三角洲平原和海岸地区的2支长岩心钻孔(YZ07和EGQD14孔)共50个OSL样品进行测年,依据沉积物粒度特征,分别提取4—11 μm、63—100 μm或100—200 μm粒级的石英颗粒作为OSL测年材料。样品的前处理和测试在中国科学院南京地理与湖泊研究所释光年代学实验室完成。不同粒径的石英颗粒前处理流程见文献(Gao et al,2017)。所有粒级石英颗粒的等效剂量测试均采用单片再生法(single-aliquot-regenerative dose protocol,SAR)(Murray and Wintle,2000)。此外,对于100—200 μm的部分样品还使用了红外后蓝光(post-IR blue OSL SAR)(Robert et al,2003)和红外后脉冲释光(post-IR pulsed OSL SAR)测年程序(Tsukamoto et al,2016;Zhang et al,2016)。另外,为了进一步检验钻孔地层OSL年龄序列的可靠性,YZ07孔的10个14C年代作为独立的年龄证据进行了对比研究。
两支钻孔的沉积相和地层识别划分主要依据:岩心照片资料比对、岩性描述、沉积构造与层理特征观察、关键层位的生物化石证据分析并结合长江三角洲区域晚第四纪以来总体地层搁架以及相邻钻孔的地层特征来确立地层所代表的沉积环境。具体的OSL测年样品的位置和钻孔沉积地层划分如图2所示。


图2   YZ07和EGQD14孔岩性、OSL和14C测年样品(据Gao et al(2017,2018)修改)
Fig.2 Information of lithology, OSL and 14C samples in core of YZ07 and EGQD14 (modified after Gao et al (2017, 2018))
2   OSL测年结果
2.1   OSL信号特征
如图3a和图3b所示,两个代表性样品粗颗粒石英的OSL信号均以快组分信号为主;OSL信号都在~2s内衰退到可忽略的水平。图3a插图为代表性年轻样品的OSL信号生长曲线,用线性函数进行拟合;图3b插图为相对较老的样品OSL信号生长曲线,用饱和指数函数进行拟合;测年样品的自然信号(Ln/Tn)通过拟合的生长曲线投影到对应的再生剂量轴,即等效剂量。其他粒径样品的OSL信号生长曲线和衰退曲线与图3展现的情形类似。各测片的循环比(recycling ratio)几乎都在0.9—1.1,热转移效应(recuperation)总体<5%。不同粒径的红外耗散比(IR-OSL depletion ratio)差异显著,主要表现为粗颗粒(CG,100—200 μm)的红外耗散比要低于正常可接受的0.9—1.1,而63—100 μm和细颗粒(FG,4—11 μm)则基本在0.9—1.1,如图4所示。


图3   代表性样品OSL信号的生长曲线和信号衰退曲线(Gao et al,2016)
Fig.3 Growth curves and decay curves of OSL signals for two representative samples (after Gao et al (2016))


图4   不同粒径的石英红外耗散比(Gao et al,2018)
Fig.4 IR-OSL depletion ratios of different grain-sized quartz fractions (Gao et al, 2018)
2.2   剂量率与等效剂量(De)分布
所有样品的铀、钍、钾元素含量,含水量以及不同粒径对应的剂量率结果如图5所示。从图5a—d可见,YZ07和EGQD4两支钻孔的U和Th元素的平均含量分别在2—3 ppm和8—16 ppm,K的含量分布在1%—3%,含水量约在20%—40%。从顶部沿地层自上而下,两支钻孔的含水量有轻微下降的趋势,可能受沉积压实的影响。综合考虑沉积埋藏时期含水量复杂的变化历史,最终以实测含水率赋以10%的误差考虑其吸附的剂量率。图5e—g分别是100—200 μm、4—11 μm和63—100 μm 样品的剂量率随地层序列变化情况。


图5   U、Th、K元素含量、含水量及不同粒径样品的剂量率结果(据Gao et al(2017,2018)修改增补)
Fig.5 Concentration of U, Th and K, water content and dose rates of all samples (modified from Gao et al (2017, 2018))
粗颗粒代表性样品(NL-588和NL-619)的等效剂量(equivalent dose,De)分布如图6所示。常规SAR方法测得的De相对离散,而同样的样品用POSL测年技术测得的De分布则相对集中。此外,细颗粒样品的等效剂量分布因均一效应(Long et al,2015)而表现的较为集中。4—11 μm和63—100 μm的样品De分布以及更多粗颗粒样品的De分布以及相应年代模型统计分析已在作者前期工作中予以详细(Gao et al,2016,2017,2018)。


图6   粗颗粒OSL和POSL等效剂量分布(引自Gao et al(2017))
Fig.6 De distribution of CG quartz measured by OSL and POSL dating procedures (after Gao et al (2017))
2.3   不同粒径石英颗粒OSL年代结果对比及可靠性分析
以YZ07孔和EGQD14孔为例,对比不同粒径的石英OSL测年结果发现,4—11 μm和63—100 μm的OSL年龄在误差范围内一致,而100—200 μm的OSL年龄要偏低,如图7a和图7b所示。针对此情况,首要的原因可能是三角洲-海岸地带不同粒径沉积物在搬运沉积过程中经历不同程度的信号晒退。但分析近年来在长江三角洲平原、长江水下三角洲以及日本海开展的4—11 μm石英OSL测年工作(Wang et al,2015;Sugisaki et al,2015)发现:这些研究均认为4—11 μm石英矿物OSL信号晒退较充分,测年结果可靠。此外,长江三角洲钻孔的对应地层的年代框架也与本文钻孔细颗粒OSL年代相一致(Nian et al,2018a,2018b),这也进一步支持本研究中细颗粒OSL年代结果的可信性。在EGQD14孔中63—100 μm石英OSL年龄也与其对应的4—11 μm样品年龄在误差范围内基本一致。这说明前两者与100—200 μm石英颗粒年代不一致的原因并非它们OSL信号晒退不充分造成年龄高估的问题所致(Gao et al,2018),而更可能是由于后者(100—200 μm)的石英颗粒因长石包裹体存在造成年龄低估。例如,在图7b中,2个样品的100—200 μm常规的OSL年龄明显偏低,但它们的POSL年龄与对应的4—11 μm和63—100 μm的OSL年龄几乎一致。这表明粗颗粒年龄的低估可用POSL等测年技术进行克服,从而获得与细颗粒组分一致的OSL年龄,如图8所示。通过这些研究,本文认为在长江三角洲以及相邻的陆架环境,较细颗粒的沉积物的OSL测年效果会更加理想。这种观点也得到了长江三角洲地区的其他钻孔的释光测年研究工作佐证和支持(Wang et al,2015;Sugisaki et al,2015;Nian et al,2018a,2018b;年小美和张卫国,2018)。


图7   不同粒径样品OSL年龄对比(据Gao et al(2017,2018)修改)
Fig.7 OSL ages comparison between different grain-sized quartz fractions (modified from Gao et al (2017, 2018))


图8   不同测年流程的粗颗粒OSL年代与细颗粒常规OSL年龄对比(引自Gao et al,2017))
Fig.8 Comparisons of OSL ages between CG grains determined by different SAR proticols and FG quartz fractions (after Gao et al (2017))
2.4   OSL年代与14C独立年代对比研究
以YZ07孔为例,将30个OSL和10个14C年代用Bacon软件(Blaauw,2010)建立该孔的年代-深度模型,如图9所示,OSL年代序列与地层序列相符而14C年龄却出现严重的年龄倒置问题。除此以外,年小美等人对长江三角洲平原的SD、TZ和NT孔(钻孔位置见图1)年代学研究也报道了类似问题(Nian et al,2018a,2018b;年小美和张卫国,2018)。由此说明,在长江三角洲海岸地区,14C测年因年龄倒置问题一定程度上影响了据此构建的年代地层框架的可靠性,而OSL测年能为建立区域沉积地层的年龄框架提供可替代方案,可单独或者与14C测年结合用于约束三角洲-海岸沉积地层的年龄框架。


图9   YZ07 孔OSL年龄与14C测年对比(引自Gao et al(2017))
Fig.9 A comparison of OSL ages and 14C ages in Core YZ07 (modified by Gao et al (2017))
3   氧同位素3阶段以来长江三角洲年代地层序列与沉积环境探讨
3.1   MIS3 阶段沉积环境特征探讨
如上所述,长江三角洲MIS3阶段的沉积环境演化问题因年代不确定,一直是一个有争议的研究热点。例如:Sun et al(2015)认为长江三角洲北部MIS3阶段发育古河道沉积,而在长江三角洲南部的太湖平原地区,有学者认为MIS3阶段出现强海相事件(Zhao et al,2008;Wang et al,2013;陈艇等,2013)。最近,Zhang et al(2017)对长江三角洲古下切河谷内的沉积环境进行了详细的分析,认为晚第四纪以来长江三角洲平原存在三期叠置的河流相沉积,并未发现海相性较强的沉积地层。本研究中EGQD14孔底部地层的2个OSL年代支持MIS3阶段发育陆相沉积环境。此外,长江水下三角洲的两只钻孔CJK07和CJK11孔的年代地层证据也表明在MIS3时段发育河流沉积为主导的沉积环境(Xu et al,2016),见图10。


图10   长江三角洲钻孔地层地质剖面(Gao et al(2018))
Fig.10 Core’s stratigraphy correlation of the Yangtze River delta (Gao et al (2018))
3.2   LGM以来长江三角洲沉积环境演变与海岸变迁
EGQD14孔和YZ07孔OSL年代地层序列均表明在LGM时段存在沉积间断(图11和图12)。同样,在黄海东海岸地区的韩国NDKdong和Yeogsan三角洲也有LGM时段的沉积缺失的报道(Kim et al,2012,2015)。这可能与末次盛冰期亚太边缘海地区海面大幅度下降背景下,河流侵蚀加剧而发育的古下切河谷等地形有关(Hori et al,2001;Li et al,2002)。末次冰消期以来,随着海面上升,沉积中心开始逐渐由海向陆推进,海岸线也随之迁移。例如以ESC-DZ1孔代表的长江水下三角洲及外海区和以YZ07孔、EGQD14孔位代表的长江三角洲的年代地层证据很显然的揭示了沉积中心的向陆迁移的时空差异特征(图1、图11和图12),ESC-DZ1的沉积主要集中在末次冰消期时段,而YZ07等多支钻孔的沉积主要集中在全新世。在约7—8 ka,海面上升到高水位阶段(Hori and Saito,2007),海侵范围达到最大规模,形成全新世最大海侵,海岸线退到镇江—扬州一带(李从先和范代读,2009)(图12)。大约6—5.5 ka,随着海面开始减速上升,在长江河口处相继发育几期河口沙坝,依次为红桥期、黄桥期、金沙期、海门期以及近晚期发育的崇明和长兴岛沙坝(同济大学海洋地质系三角洲科研组,1978),如图12所示。这些河口沙坝后期逐渐成为长江三角洲的发育基础。在此过程中,长江主河道受科里奥利力的影响,不断向东南迁徙,海岸线和三角洲的沉积中心也逐渐向海迁移,并在河口以外发育水下三角洲(同济大学海洋地质系三角洲科研组,1978)。上述长江三角洲LGM以来的沉积环境演变和海岸变迁过程近年以来又继续也被一些浅层地震剖面、钻孔孢粉分析、遥感调查与解译等最新的研究工作予以证实和加以丰富(Feng et al,2016,2017;Fan et al,2017;Zhang et al,2018;Zhao et al,2018)。


图11   LGM以来长江三角洲年代地层序与海面变化曲线对应关系(改自Gao et al(2016))
Fig.11 Chronostratigraphy of the Yangtze River delta since the LGM and its response to sea level changes (modified from Gao et al (2016))Source of cores: ECS-DZ1 from Wang et al (2015); ND01 from Kim et al (2015); SD, NT and TZ from Nian et al (2018a, 2018b). Source of sea level curves according to references in Gao et al (2016).
钻孔来源:ECS-DZ1孔引自Wang et al(2015);ND01孔引自Kim et al(2015);SD、NT和TZ孔引自Nian et al(2018a,2018b)。海面曲线的引用文献见Gao et al(2016)。


图12   LGM以来长江三角洲沉积演化时空特征与海岸动态(据Gao et al(2017)及相关文献修改)
Fig.12 Spatial-temparal variations of the Yangtze River delta and its coastal dynamics since the LGM (modified after Gao et al (2017) and references therein)
3.3   全新世以来长江三角洲沉积速率变化历史
全新世长江三角洲的沉积速率变化是个引人关注的问题(Fan et al,2017)。据YZ07的年代-深度关系推算,全新世以来长江三角洲的沉积速率主要体现在3个阶段:(1)早全新世(10—9 ka),堆积作用较快,沉积速率在10—20 m/ka。(2)在距今9—2 ka,沉积速率相对较低,大约在5—10 m/ka。(3)在~2 ka以来,沉积速率再次加快,约10—15 m/ka。如图13所示,YZ07孔全新世的沉积速率变化特征也得到长江三角洲平原和水下三角洲多支钻孔的印证,如CM7孔(Hori et al,2014),ZK9孔(Wang et al,2010)和ECS-DZ1孔(Wang et al,2015)。此外,最新在长江三角洲开展的钻孔研究也进一步证实了之前估算的全新世三角洲的沉积速率的变化。例如Nian et al(2018a,2018b)对古长江下切河谷区域范围的TZ孔,NT孔和SD孔的年代-深度的研究,如图11所示。


图13   全新世长江三角洲沉积速率变化(引自Gao et al(2017))
Fig.13 Sedimentation rates of the Holocence Yangtze River delta (after Gao et al (2017))4
4   结论与展望
本研究对长江三角洲开展了系统的释光年代学研究并在此基础上探讨了晚第四纪以来的沉积环境变化过程。YZ07和EGQD14钻孔OSL测年结果均表明细颗粒石英测年建立的年代地层序列更为可靠,部分粗颗粒石英因含有长石包裹体,常规OSL年龄存在低估,但运用脉冲释光测年技术(POSL)可以解决。目前的年代地层证据支持MIS3阶段长江三角洲更可能为河流等主导的陆相的沉积环境,LGM时段存在沉积缺失,年代地层证据与古沉积地貌相吻合。全新世以来的长江三角洲三个阶段性的堆积速率变化与该时期海面变化,沉积中心的迁移和三角洲的兴起和发育密切相关。
尽管已对MIS3阶段以来的长江三角洲进行了年代地层学研究并获得了较高分辨的年代地层序列,但研究尺度还主要集中于全新世时段。末次间冰期以来的长江三角洲,尤其是MIS3阶段更多的年代地层学还有待在进一步深入探讨。另外,从释光测年技术角度而言,目前的工作主要是运用石英释光测年技术定年,而近年来发展较快的长石释光测年技术,如两步红外激发技术(pIRIR)(Thomsen et al,2008)和多步红外激发技术(MET-pIRIR)(Li and Li,2011)的研究报道较少。计划在下一步研究中将运用长石红外释光测年技术开展晚第四纪长江三角洲更长尺度以来的年代地层研究。
致谢:
本研究得到了中国科学院南京地理与湖泊研究所沈吉研究员和于革研究员、江苏省地质调查研究院张平高级工程师、南京大学地理与海洋科学学院殷勇副教授等的指导和支持,在此表示感谢!
陈艇, 王张华, 强小科, 等. 2013. 太湖平原WJ孔矿物磁学特征以及晚第四纪海侵事件[J]. 地球物理学报, 56(8): 2748-2759. [Chen T, Wang Z H, Qiang X K, et al. 2013. Magnetic properties of minerals recorded by the borehole WJ and Late Quaternary transgressions in the Taihu plain, southern Yangtze Deta [J]. Chinese Journal of Geophysics, 56(8): 2748-2759.]
李从先, 陈庆强, 范代读, 等. 2004. 末次盛冰期以来长江三角洲地区的沉积相和古地理[J]. 古地理学报, 1(4): 12-25. [Li C X, Chen Q Q, Fand D D, et al. 2004. Palaeogeography and palaeoenvironment in Changjiang Delta since last glaciation [J]. Journal of Palaeogeography, 1(4): 12-25.]
李从先, 范代读. 2009. 全新世长江三角洲的发育及其对相邻海岸沉积体系的影响[J]. 古地理学报, 11(1): 115-122. [Li C X, Fan D D. 2009. Development of the Holocene Changjinag dela and its influence on adjacent coastal sedimentary systems [J]. Journal of Palaeogeography, 11(1): 115-122.]
李从先, 王靖泰, 许世远, 等. 1980. 全新世长江三角洲地区的海进海退层序[J]. 地质科学, (4): 322-330. [Li C X, Wang J T, Xu S Y, et al. 1980. Holocence transgressive-regressive sequence in Yangtze delta area [J]. Scientia Geologica Sinica, (4): 322-330.]
李从先, 张桂甲. 1996. 晚第四纪长江和钱塘江河口三角洲地区的层序界面和沉积间断[J]. 自然科学进展, 6(4): 79-87. [Li C X, Zhang G J. 1996. The Yangtze River and Qiantang River estuary-delta sequence stratigraphy and depositional hiatus in Late Quaternary [J]. Natural Science Advances, 6(4): 79-87.]
林春明, 张霞, 邓程文, 等. 2016. 江苏南通地区晚第四纪下切河谷沉积与环境演变[J]. 沉积学报, 34(2): 268-280. [Lin C M, Zhang X, Deng C W, et al. 2016. Sedimentary characteristics and environmental evolution of the Late Quaternary incised-valley in Nantong area of Jiangsu Province, China [J]. Acta Sedimentalogica Sinica, 34(2): 268-280.]
年小美, 张卫国. 2018. 光释光技术在我国海岸晚第四纪沉积测年中的应用[J].第四纪研究, 38(3): 573-586. [Nian X M, Zhang W G. 2018. Application of optically stimulated luminescence dating to Late Quaternary coastal deposits in China [J]. Quaternary Sciences, 38(3): 573-586.]
施雅风, 于革. 2003. 40—30 ka B.P.中国暖湿气候和海侵的特征与成因探讨[J]. 第四纪研究, 23(1): 1-11. [Shi Y F, Yu G. 2003. Warm-humid climate and transgressions during 40—30 ka B.P. and their potential mechanisms [J].Quaternary Sciences, 23(1): 1-11.]
同济大学海洋地质系三角洲科研组. 1978. 全新世长江三角洲的形成和发育[J]. 科学通报, (5): 310-313. [Delta Research Group, Department of Marine Geology, Tongji University. 1978. Holocene formation and development of the Yangtze Delta [J]. Chinese Science Bulletin, (5): 310-313.]
杨达源, 陈可锋, 舒肖明. 2004. 深海氧同位素第3阶段晚期长江三角洲古环境初步研究[J]. 第四纪研究, 24(5): 525-530. [Yang D Y, Cheng K F, Shu X M. 2004. A preliminary study on the paleoenvironemnt during MIS3 in the Changjiang Delta region [J]. Quaternary Sciences, 24(5): 525-530.]
杨怀仁, 陈西庆. 1985. 中国东部第四纪海面升降、海侵海退与岸线变迁[J]. 海洋地质与第四纪地质, 5(4): 59-80. [Yang H R, Chen X Q. 1985. Quaternary transgression, eustatic changes and shifting of shorelines in east China [J]. Marine Geology and Quaternary Geology, 5(4): 59-80.]
于革, 叶良涛, 廖梦娜, 等. 2016. 我国沿海平原晚更新世海侵的定量重建、模拟与机制研究[J]. 第四纪研究, 36(3): 711-721. [Yu G, Ye L T, Liao M N, et al. 2016. Quantitative reconstruction, simulation and mechanism study on the Late pleistocene marine transgressions in the coastal plains of China [J]. Quaternary Sciences, 36(3): 711-721.]
于振江, 郭盛乔, 梁晓红, 等. 2005. 长江三角洲(江南)地区第四纪海侵层的划分及时代归属[J]. 地层学杂志, 29(S1): 618-625. [Yu Z J, Guo S Q, Liang X H, et al. 2005. Division and age assignment of the Quaternary transgression layers in the Yangtze delta area, (South Yangtze) [J]. Journal of Stratigraphy, 29(S1): 618-625.]
朱诚, 吴立, 李兰, 等. 2016. 对江苏新石器时代海面变化问题的再认识[J]. 科学通报, 61(3): 374-387. [Zhu C, Wu L, Li L, et al. 2016. Recognition of sea-level change during the Neolithic period in the Jiangsu Area, East China [J]. Chinese Science Bulletin, 61(3): 374-387.]
Arnold L J, Roberts R G, Galbraith R F, et al. 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments [J]. Quaternary Geochronology, 4(4): 306-325.
Blaauw M. 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences [J]. Quaternary Geochronology, 5(5): 512-518.
Bøtter-Jensen L, Thomsen K J, Jain M. 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry [J]. Radiation Measurements, 45(3/4/5/6): 253-257.
Chamberlain E L, Wallinga J, Reimann T, et al. 2017. Luminescence dating of delta sediments: Novel approaches explored for the Ganges-Brahmaputra-Meghna Delta [J]. Quaternary Geochronology, 41: 97-111.
Chen Z Y, Zong Y Q, Wang Z H, et al. 2008. Migration patterns of Neolithic settlements on the abandoned Yellow and Yangtze River deltas of China [J]. Quaternary Research, 70(2): 301-314.
Fan D D, Wu Y, Zhang Y, et al. 2017. South Flank of the Yangtze Delta: Past, present, and future [J]. Marine Geology, 392: 78-93.
Feng Z, Liu B, Zhao Y, et al. 2016. Spatial and temporal variations and controlling factors of sediment accumulation in the Yangtze River estuary and its adjacent sea area in the Holocene, especially in the Early Holocene [J]. Continental Shelf Research, 125: 1-17.
Feng Z, Liu B, Zhao Y, et al. 2017. Structure,distribution, and evolution history of the Early Holocene erosional mud ridge system on the inner East China Sea shelf near the Yangtze River estuary [J]. Geomorphology, 283: 173-188.
Gao L, Long H, Shen J, et al. 2016. High-resolution OSL dating of a coastal sediment sequence from the South Yellow Sea [J]. Geochronometria, 43(1): 143-154.
Gao L, Long H, Shen J, et al. 2017. Optical dating of Holocene tidal deposits from the southwestern coast of the South Yellow Sea using different grain-size quartz fractions [J]. Journal of Asian Earth Sciences, 135: 155-165.
Gao L, Long H, Zhang P, et al. 2018. The sedimentary evolution of Yangtze River delta since MIS3: A new chronology evidence revealed by OSL dating [J]. Quaternary Geochronology, https://doi.org/10.1016/j.quageo.2018.03.010.(in press)
Guérin G, Mercier N, Adamiec G. 2011. Dose-rate conversion factors: update [J]. Ancient TL, 29(1): 5-8.
Hori K, Saito Y, Zhao Q H, et al. 2001a. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China [J]. Geomorphology, 41(2/3): 233-248.
Hori K, Saito Y, Zhao Q H, et al. 2001b. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression [J]. Marine Geology, 177(3/4): 331-351.
Hori K, Saito Y. 2007. An early Holocene sea-level jump and delta initiation [J]. Geophysical Research Letters, 34(18): L18401. DOI: 10.1029/2007GL031029.
Kim J C, Eum C H, Yi S, et al. 2012. Optically stimulated luminescence dating of coastal sediments from southwestern Korea [J]. Quaternary Geochronology, 10: 218-223.
Kim J C, Cheong D, Shin S, et al. 2015. OSL chronology and accumulation rate of the Nakdong deltaic sediments, southeastern Korean Peninsula [J]. Quaternary Geochronology, 30: 245-250.
Kopp R E, Kemp A C, Bittermann K, et al. 2016. Temperature-driven global sea-level variability in the Common Era [J]. Proceeding of the National Academy of Sciencence ot the United Sates of America, 113(38): E1434-E1441.
Lamothe M. 2016. Luminescence dating of interglacial coastal depositional systems: Recent developments and future avenues of research [J]. Quaternary Science Reviews, 146: 1-27.
Li C X, Wang P, Sun H P, et al. 2002. Late Quaternary incised-valley fill of the Yangtze delta (China): its stratigraphic framework and evolution [J]. Sedimentary Geology, 152(1/2): 133-158.
Li B, Li S H. 2011. Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction [J]. Quaternary Geochronology, 6(5): 468-479.
Li C X, Chen Q Q, Zhang J Q, et al. 2000. Stratigraphy and paleoenvironmental changes in the Yangtze Delta during the Late Quaternary [J]. Journal of Asian Earth Sciences, 18(4): 453-469.
Li Y, Tsukamoto S, Hu K, et al. 2017. OSL and K-feldspar post-IR IRSL dating of sand accumulation in the Lower Liao Plain (Liaoning, NE China) [J]. Geochronometria, 44(1): 1-15.
Liu J P, Milliman J D, Gao S, et al. 2004. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea [J]. Marine Geology, 209(1/2/3/4): 45-67.
Long H, Shen J, Wang Y, et al. 2015. High-resolution OSL dating of a late Quaternary sequence from Xingkai Lake (NE Asia): Chronological challenge of the “MIS 3a Mega-paleolake” hypothesis in China [J]. Earth and Planetary Science Letters, 428: 281-292.
Aitken M J. 1998. An introduction to optical dating [M]. London: Oxford University Press.
Madsen A T, Murray A S, Andersen T J, et al. 2005. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating [J]. Marine Geology, 214(1/2/3): 251-268.
Mauz B, Baeteman C, Bungenstock F, et al. 2010. Optical dating of tidal sediments: potentials and limits inferred from the North Sea coast [J]. Quaternary Geochronology, 5(6): 667-678.
Murray A S, Wintle A G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol [J]. Radiation Measurements, 32: 57-73.
Nerem R S, Beckley B D, Fasullo J T, et al. 2018. Climate-change-driven accelerated sea-level rise detected in the altimeter era [J]. Proceeding of the National Academy of Sciencence ot the United Sates of America, 115(9): 2022-2025.
Nian X M, Zhang W G, Wang Z H, et al. 2018a. The chronology of a sediment core from incised valley of the Yangtze River delta: Comparative OSL and AMS 14 C dating [J]. Marine Geology, 395: 320-330.
Nian X M, Zhang W G, Wang Z H, et al. 2018b. Optical dating of Holocene sediments from the Yangtze River (Changjiang) Delta,China [J]. Quaternary International, 467: 251-263.
Prescott J R, Hutton J T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations [J]. Radiation Measurements, 23(2/3): 497-500.
Roberts H, Wintle A G. 2003. Luminescence sensitivity changes of polymineral fine grains during IRSL and [post-IR] OSL measurements [J]. Radiation Measurements, 37(6): 661-671.
Shen Z, Törnqvist T E, Mauz B, et al. 2015. Episodic overbank deposition as a dominant mechanism of floodplain and delta-plain aggradation [J]. Geology, 43(10): 875-878.
Song B, Li Z, Saito Y, et al. 2013. Initiation of the Changjiang (Yangtze) delta and its response to the mid-Holocene sea level change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 81-97.
Sugisaki S, Buylaert J P, Murray A S, et al. 2015. OSL dating of fine-grained quartz from Holocene Yangtze delta sediments [J]. Quaternary Geochronology, 30(1): 226-232.
Sun Z, Li G, Yin Y. 2015. The Yangtze River deposition in southern Yellow Sea during Marine Oxygen Isotope Stage 3 and its implications for sea-level changes [J]. Quaternary Research, 83: 204-215.
Thomsen K J, Murray A S, Jain M, et al. 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts [J]. Radiation Measurements, 43(9/10): 1474-1486.
Tsukamoto S, Rades E F. 2016. Performance of pulsed OSL stimulation for minimising the feldspar signal contamination in quartz samples [J]. Radiation Measurements, 84: 26-33.
Wang F, Nian X M, Wang J L, et al. 2018. Multiple dating approaches applied to the recent sediments in the Yangtze River (Changjiang) subaqueous delta [J]. The Holocene, 28: 858-866.
Wang Y, Long H, Yi L, et al. 2015. OSL chronology of a sedimentary sequence from the inner-shelf of the East China Sea and its implication on post-glacial deposition history [J]. Quaternary Geochronology, 30: 282-287.
Wang Z H, Jones B G, Chen T, et al. 2013. A raised OIS 3 sea level recorded in coastal sediments, southern Changjiang delta plain, China [J]. Quaternary Research, 79(3): 424-438.
Wang Z H, Ryves D B, Lei S, et al. 2018a. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China [J]. Quaternary Science Reviews, 187: 80-93.
Wang Z H, Saito Y, Zhan Q, et al. 2018b. Three-dimensional evolution of the Yangtze River mouth, China during the Holocene: impacts of sea level, climate and human activity [J]. Earth-Science Reviews, 185: 938-955.
Wang Z H, Xu H, Zhan Q, et al. 2010. Lithological and palynological evidence of late Quaternary depositional environments in the subaqueous Yangtze delta,China [J]. Quaternary Research, 73(3): 550-562.
Wintle A G. 2008. Luminescence dating of Quaternary sediments— introduction [J]. Boreas, 37(4): 469-470.
Xu T, Wang G Q, Shi X F, et al. 2016. Sequence stratigraphy of the subaqueous Changjiang (Yangtze River) delta since the Last Glacial Maximum [J]. Sedimentary Geology, 331: 132-147.
Yang H F, Yang S L, Xu K H. 2017. River-sea transitions of sediment dynamics: a case study of the tide-impacted Yangtze River estuary [J]. Estuarine, Coastal and Shelf Science, 196: 207-216.
Zhang J, Tsukamoto S, Jia Y, et al. 2016. Lake level reconstruction of Huangqihai Lake in northern China since MIS 3 based on pulsed optically stimulated luminescence dating [J]. Journal of Quaternary Science, 31(3): 225-238.
Zhang X, Dalrymple R W, Lin C M. 2017. Facies and stratigraphic architecture of the late Pleistocene to early Holocene tide-dominated paleo-Changjiang (Yangtze River) delta [J]. GSA Bulletin, 30(3/4): 455-483.
Zhang X, Zhang Y, Zhu L, et al. 2018. Spatial-temporal evolution of the eastern Nanhui mudflat in the Changjiang (Yangtze River) Estuary under intensified human activities [J]. Geomorphology, 309: 38-50.
Zhao B C, Wang Z H, Chen J, et al. 2008. Marine sediment records and relative sea level change during late Pleistocene in the Changjiang delta area and adjacent continental shelf [J]. Quaternary International, 186(1): 164-172.
Zhao B C, Yan X X, Wang Z H, et al. 2018. Sedimentary evolution of the Yangtze River mouth (East China Sea) over the past 19,000 years, with emphasis on the Holocene variations in coastal currents [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 431-449.
稿件与作者信息
高 磊
GAO Lei
高 磊,E-mail: lgao@niglas.ac.cn
隆 浩
LONG Hao
国家自然科学基金(41472144,41502119,41501003);江苏省自然科学青年基金(BK20181106);中国科学院南京地理与湖泊所自主研究启动项目(NIGLAS2017QD11)
National Natural Science Foundation of China (41472144, 415021119, 41501003); Natural Science Foundation for the Young Scientists of Jiangsu (BK20181106); NIGLAS Project (NIGLAS2017QD11)
出版历史
出版时间: 2018年9月27日 (版本5
参考文献列表中查看
地球环境学报
Journal of Earth Environment