研究论文 正式出版 版本 2 Vol 10 (1) : 87-93 2019
下载
内蒙古四种牧草对土壤中汞富集能力与生理响应
Accumulation characteristics and physiological responses of four kinds of pasture to mercury in Inner Mongolia
: 2018 - 04 - 30
: 2018 - 09 - 20
202 2 0
摘要&关键词
摘要:随着内蒙古就地煤电转化发展方式的推行,周边土壤中来自大气汞沉降逐步加剧。为了解牧草对汞的富集能力与耐性机理,选取内蒙古草场常见四种牧草:羊草、紫花苜蓿、披碱草和高羊茅进行研究。通过野外汞沉降模拟试验及汞胁迫盆栽种植试验,分别测定土壤、植物中总汞含量,及植物生理生化值,分析被试牧草汞含量与土壤汞含量相关性。供试土壤为砂土,pH在7.43-8.53,当土壤中汞含量不高于1.0 mg·kg-1时,四种牧草富集系数皆>1。结果表明:不同牧草对汞富集能力不同并且会受土壤中汞含量影响,牧草对汞富集系数随汞胁迫浓度增高而逐渐下降,汞胁迫下牧草细胞膜脂过氧化程度提高,牧草通过提高抗氧化酶酶活、脯氨酸含量调节细胞是其耐受汞的重要机理。
关键词:牧草;汞;富集;生理响应
Abstract & Keywords
Abstract: Background, aim, and scope Some of large coal enterprises in Inner Mongolia have been striving to develop coal-fired power plants and promoting the integration of coal and electricity, which leads to the rapid increase of coal consumption in Inner Mongolia. During the coal combustion, the phenomenon of mercury emissions into the atmosphere appears, which results in a serious of impacts on environmental pollution. Therefore, this paper studied the mercury enrichment capacity of various pasture and their tolerance to mercury through the experiment of mercury stress in pasture in Inner Mongolia. Materials and methods The experimental materials included Leymus chinensis, Medicago sativa, Elymus dahuricus, Festuca elata,[lyj1] the pasture and seeds were provided by the grassland station of the Chinese Academy of Sciences in Dongwuzhu, Inner Mongolia, the experimental soil was collected from grassland of Chinese Academy of Sciences in Dongwuzhu, Inner Mongolia. The method of microwave digestion was used to determine mercury content of plant and soil, malondialdehyde (MDA) was determined by colorimetric method, the soluble protein was determined by coomassie brilliant blue staining, the soluble sugar content was determined by anthrone method. Results In the case of low concentration of mercury, all the four kinds of pasture had certain adsorption capacity on mercury, but when the concentration of mercury in the soil continued to increase, four kinds of pasture mercury enrichment effect was not as expected, not like enrichment plant. When the mercury concentration in soil was not higher than that of the soil quality standard, the enrichment coefficient of the four pastures were all greater than 1, which had the better ability to accumulate mercury. Average mercury adsorption efficiency of Leymus chinensis was 26.22%, followed by Elymus dahuricus, the adsorption efficiency was 24.61%, again is Festuca elata, the adsorption efficiency was 22.69%, the lowest was Medicago sativa, the adsorption efficiency was 15.57%. It can be used to extract mercury contaminated soil.The correlation between heavy metals in plant and soil is related to the physiological characteristics of plant, indicating that the mercury content in herbage is related to the mercury content in soil. With the increase of mercury stress concentration, the content of malondialdehyde (MDA) in the four kinds of pasture showed the trend of the first decrease and then rise. After reaching the lowest value, the MDA content of the four pastures increased with the increase of mercury stress concentration. Among them, Medicago sativa had the greatest change in MDA content under mercury stress, so it was the most affected. When the mercury stress concentration was 64.0 mg·kg-1, the content of the four kinds of pasture was the highest, 7.48 times, 5.63 times, 3.42 times and 4.02 times of the control group. Among the four kinds of pasture, Leymus chinensis was the most powerful for the stress resistance of mercury. Discussion Refers to some kind of heavy metal content in plant enrichment coefficient and the ratio of this kind of heavy metals in soil original content, can reflect the enrichment ability of plants to heavy metals, the greater the enrichment coefficient, said its accumulation ability is strong. Four kinds of pasture have adsorption effect on mercury in soil at various levels of mercury stress. The mercury content in pasture was correlated with mercury content in soil. Malondialdehyde and proline can reflect mercury's physiological toxicity to plants. ConclusionsThe mercury accumulation in plants was significantly affected by different concentrations of mercury stress. Four kinds of pasture have certain adsorption and transfer ability to mercury in soil. When the mercury stress concentration was low (<16.0 mg·kg-1), Medicago sativa had the strongest adsorption capacity. After the increase of mercury stress concentration (>16.0 mg·kg-1), Elymus dahuricus had the strongest adsorption capacity.The mercury enrichment coefficient was decreased with the increase of mercury stress concentration, among which the maximum enrichment coefficient was the highest. Mercury stress has a significant effect on the physiology of different pasture. When the mercury content in soil is too high, it can have a toxic effect on the growth of four kinds of pasture. Under the effect of a certain concentration of mercury stress, the pasture by raising the proline content, promote the antioxidant enzymes enzyme activity, reduce the stress caused by mercury higher reactive oxygen species, as well as the level of membrane lipid peroxidation, equilibrium cell osmotic pressure and environment necessary to sustain the plant normal growth. Recommendations and perspectivesInner Mongolia is a coal producing province, and the economic development model of coal-power integration should be promoted in the long-term planning and protection of grassland ecology. As a result, the amount of coal will be released as well as the increase of coal-fired power generation. Proper measures should be taken to control the mercury content in flue gas of coal-fired power plants and to prevent the emission of long-term and low concentration mercury from coal-fired power plants in grassland vegetation.
Keywords: pasture; mercury; accumulation characteristics; physiological response
内蒙古地区地层发育齐全,岩浆活动频繁,成矿条件好,矿产资源丰富,内部资料显示,仅呼伦贝尔、锡林浩特、霍林郭勒、鄂尔多斯的煤炭探明储量已达3903.48亿吨,约占全国总储量的43.5%。并且自2012年,内蒙古采用燃煤发电这一方式,大力推广煤电一体化项目,转煤输送为电输送,使该地区燃煤量大幅增长,汞排放量随之升高。相关研究已证实,内蒙古地区燃煤电厂汞排放量占总排放量的41.3%,是大气汞排放的主要来源之一(张静静等,2014)。大气中汞通过干湿沉降返回地面,进入土壤,从而影响植物生长(Pirrone,2010)。汞是植物生长的非必需元素,当土壤中汞胁迫浓度过高后,会对植物产生毒害作用。通过在全省范围实地采样检测,已知内蒙古地区土壤中汞含量范围是0.0277—3.0977 mg·kg-1,参考国家土壤环境质量标准(GB 15618—2018)(土壤中汞含量不超过3.4 mg·kg-1),说明所调查地区部分土壤中汞含量已临近国家标准,随着汞排放不断积累,将威胁植物正常生长。内蒙古作为全国重点牧区,草原承担着为畜牧提供大量食料的重要任务,但其草原土壤汞污染不断加剧,不仅威胁草原生态系统第一生产者牧草的生长,进而还将通过食物链危及畜类乃至人类健康。目前,国内外大量汞污染相关研究工作多以蔬菜、谷物为主,鲜有以牧草为研究对象的相关研究。本文通过对内蒙古地区牧草汞胁迫实验,研究四种牧草的汞富集能力及对汞耐受性,以期为草原牧草在汞胁迫作用下生理响应的相关研究积累有价值的信息,同时为寻求草原土壤中汞的生物治理措施提供理论依据。
1   材料与方法
1.1   野外样地布设
样地选取在内蒙古东乌珠穆沁旗,N 45°34′58″,E 116°57′60″,10m×7m样地。使用分析纯氯化汞(HgCl2),根据土壤污染风险管控标准,依照等比法设置处理水平间隔(洪曾纯,2011),模拟大气汞沉降进入本底土壤后影响,HgCl2处理设置10个水平(0、0.5、1.0、1.5、2.0、4.0、8.0、16.0、32.0、64.0 mg·kg-1),每个处理7次重复。经过14周生长期后,将样地植物(主要物种为羊草Leymus chinensis (Trin.) Tzvel)整株采集。并挖取植株根部附近5cm深土壤样品带回测定。
1.2   盆栽试验设计
采用盆栽汞胁迫控制试验,供试土壤为内蒙古东乌珠穆沁旗中科院草原站草场内土壤,土样风干、碾碎后过2 mm筛后混匀,每盆7 cm×7 cm×7 cm(高),装土150 g(干重)。HgCl2处理设置10个水平(0、0.5、1.0、1.5、2.0、4.0、8.0、16.0、32.0、64.0 mg·kg-1),每个处理3次重复,土样混匀、稳定7天。供试种子由内蒙古东乌珠穆沁旗中科院草原站提供,将筛选出的饱满籽粒的种子(紫花苜蓿Medicago sativa L.、披碱草Elymus dahuricus Turcz.、高羊茅Festuca elata Keng ex E. Alexeev)浸泡在蒸馏水中催芽,露白后选择长势一致的种子种花盆中,每盆种入15颗。日常以去离子水维持适宜水分,采用自然光照。
1.3   测定方法
参考《食品中总汞及有机汞的测定》(GB5009.17-2014)和《土壤和沉积物 汞、砷、硒、铋、锑的测定微波消解/原子荧光法》(HJ 680-2013),对植物根部及土壤进行微波消解(型号MD6C-4H),用原子荧光光度仪(普析通用PF-7原子荧光光度计),测定总汞含量。生理指标测定参考植物生理学指导(华东师范大学生物系植物生理教研室,1980)。
1.4   数据处理
植物中汞富集系数按下式计算:
富集系数=植物体内汞含量/土壤中汞含量(刘国锋,2006)
数据运算采用Excel2007,统计分析采用SPSS19.0中单因素方差分析法(ANOVA),运用LSD、Duncan对数据进行两两比较。方差分析之前,先对数据进行正态分布检验及方差齐性检验。在图表中有相同字母数据为无显著性差异(p>0.05),不同字母表示数据有显著性差异(p<0.05)。
2   结果与分析
2.1   牧草对土壤中汞的富集能力
2.1.1   牧草汞含量与土壤汞含量相关性
植物中重金属含量与土壤中重金属之间的相关性与植物生理特征有关(黄玉芬2011,赵鲁等2013,Pavlish J H,2003),显著性表明,牧草中汞含量与土壤中汞含量具有相关性。由表1可知,在试验研究范围内(0.5-64.0 mg·kg-1),羊草、紫花苜蓿、披碱草中汞含量与土壤中汞含量呈显著正相关(P<0.01),高羊茅与土壤中汞含量无显著相关性,由图1可知,其中当土壤中汞含量高于16.0 mg·kg-1时,高羊茅汞含量明显降低,因此分析土壤中汞含量在0.5-16.0 mg·kg-1范围内,高羊茅汞含量与土壤汞含量的相关性,发现Pearson相关性为0.966,显著性(双侧)为0.00,呈显著正相关(P<0.01)。当土壤中汞含量过高后,植物受到毒害作用,汞积累量降低。
表1   牧草中汞含量与土壤汞含量相关性
指标羊草
Leymus chinensis
紫花苜蓿
Medicago sativa
披碱草
Elymus dahuricus
高羊茅
Festuca elata
Pearson相关性
Pearson correlation
0.953**0.901**0.891**0.309
显著性(双侧)
Significance level
0.0000.0000.0000.097
注:**在0.01水平(双侧)上显著相关。
Note:**on 0.01 level (bilateral) is obvious.




图1   植物汞含量与土壤汞含量关系
Fig.1 Relation of plant mercury content to soil mercury content




 
2.1.2   牧草对汞富集系数
富集系数(EC)指植物体内某种重金属含量与土壤中该种重金属原有含量的比值,是评价植物富集重金属能力的重要指标之一,可以反映植物对重金属的富集能力,富集系数越大,表示其富集能力越强(刘月莉,2006)。杨保华(2004)对水马齿、眼子菜研究实验结果表明,汞的富集是生物主动吸收与表面被动吸附共同作用的结果。刘雅妮等(2014)对汞矿废弃地带植物富集能力研究表明,土壤汞浓度太高情况不适宜植物生长。本实验中,由表2可知,四种牧草富集系数>1对应土壤中汞胁迫浓度临界梯度依次为:1.5 mg·kg-1(羊草)、4.0 mg·kg-1(紫花苜蓿)、2.0 mg·kg-1(披碱草)、4.0 mg·kg-1(高羊茅),表明在较低浓度汞胁迫的情况下,四种牧草对土壤中汞具有一定的吸附能力,根据土壤环境质量标准,当土壤中汞含量浓度未超过土壤质量标准要求的范围内时,四种牧草的富集系数皆大于1,具有较好的富集重金属汞能力。但当土壤中汞胁迫浓度继续增加后,吸附汞量增加,但四种牧草富集增量汞与环境增量不成比例,因环境增量可无限,富集量有限,因而富集系数呈减小趋势,四种牧草对于汞的富集效果不理想,无法作为高含量土壤中富集汞的植物。
表2   四种牧草的汞富集系数
汞胁迫浓度
Concentration of Hg2+/(mg·kg-1
羊草
Leymus chinensis
紫花苜蓿
Medicago sativa
披碱草
Elymus dahuricus
高羊茅
Festuca elata
0.53.291.112.702.77
1.01.503.231.051.83
1.50.392.201.281.09
2.00.181.730.931.29
4.00.200.800.200.75
8.00.110.330.170.39
16.00.110.280.240.42
32.00.090.490.960.04
64.00.120.230.450.05
2.1.3牧草对土壤中汞吸附能力
由表3可知,四种植物在各汞胁迫水平下均对土壤中的汞有吸附作用。牧草对土壤中汞吸附效率羊草>披碱草>高羊茅>紫花苜蓿,依次为26.22%、24.61%、22.69%、15.57%。同种植物比较,发现羊草在土壤中汞浓度为0.5 mg·kg-1和1.5 mg·kg-1之间时,与对照组相比无显著性差异(P>0.05)。其他浓度胁迫下,羊草对汞吸附能力呈显著性差异(P<0.05),且当汞胁迫浓度为16.0 mg·kg-1和32.0 mg·kg-1时,呈极显著差异(P<0.01),64.0 mg·kg-1时显著下降,降至对照组的19.40%。
紫花苜蓿在土壤汞胁迫浓度为0.5 mg·kg-1和2.0 mg·kg-1之间时,与对照组相比无显著性差异(P>0.05)。当汞胁迫浓度达到4.0 mg·kg-1后,紫花苜蓿对汞吸附能力呈显著性差异(P<0.05),且当汞胁迫水平为64.0 mg·kg-1时,吸附效率最高,达到39.78%。
披碱草在各浓度汞胁迫下,对土壤中汞的吸附能力与对照组相比皆呈显著性差异(P<0.05)。与紫花苜蓿相同,在汞胁迫水平为64.0 mg·kg-1时,吸附效率达到最高,为44.18%。表明披碱草可对汞污染土壤起到修复作用,能够作为萃取植物。
高羊茅仅在汞胁迫水平为0.5 mg·kg-1时,对土壤中汞的吸附与对照组相比无显著性差异(P>0.05),其他浓度下皆为显著性差异。且当汞胁迫水平为64.0 mg·kg-1时,吸附效率达到最高,为53.36%。
表3   不同牧草在汞胁迫下对土壤中汞吸附情况比较
处理汞浓度Concentration of Hg2+/(mg·kg-1无植物
No plants
羊草
Leymus chinensis
紫花苜蓿
Medicago sativa
披碱草
Elymus dahuricus
高羊茅
Festuca elata
0.00.23+0.00a0.19+0.04ab0.21+0.01ab0.18+0.02a0.19+0.01a
0.50.73+0.00a0.58+0.04ab0.64+0.02ab0.55+0.02b0.65+0.03a
1.01.23+0.00a1.19+0.02ab1.19+0.03ab1.13+0.04bc1.06+0.01c
1.51.73+0.00a1.64+0.01ab1.62+0.02ab1.55+0.01b1.53+0.03b
2.02.23+0.00a2.04+0.04b2.06+0.02ab1.82+0.01c1.82+0.02c
4.04.23+0.00a2.59+0.01d3.93+0.01b3.55+0.02c2.5+0.01d
8.08.23+0.00a4.77+0.02c7.24+0.01b4.89+0.02c6.81+0.02b
16.016.23+0.00a9.42+0.02d12.94+0.01c12.78+0.02c14.97+0.01b
32.032.23+0.00a16.26+0.01d19.89+0.01bc19.13+0.01c20.77+0.01b
64.064.23+0.00a51.77+0.02b38.68+0.01c35.85+0.01c29.96+0.01d
注:不同字母表示不同浓度间显著性差异(p<0.05)
Note:Different letters indicate significant differences between different concentrations(p<0.05)
2.2   牧草中汞生理毒性响应
丙二醛(MDA)、脯氨酸可以反映汞对植物生理毒害。汞毒害可使线粒体上ATP酶活受到抑制,影响能量的产生与供应,破坏细胞膜结构,使膜中不饱和脂肪酸产生过氧化反应,导致丙二醛含量提高(武永军等,2009)。脯氨酸对植物起着保护和调节作用,其含量的增加有助于细胞或组织持水,对原生质起着保护作用与保水作用,同时参与植物体内活性氧自由基的清除,减少重金属对细胞膜和蛋白质造成的损伤,对稳定和保护大分子化合物有重要作用(Israr M,2006)。
由图2可知,随着汞胁迫浓度的增加,四种牧草体内丙二醛(MDA)含量均先下降后上升。达到最低值后,随汞胁迫浓度的升高,四种牧草MDA含量呈上升趋势,当汞胁迫浓度为64.0 mg·kg-1时,牧草中MDA含量依次为对照组的1.34倍、2.76倍、1.24倍和1.55倍。其中紫花苜蓿在汞胁迫下MDA含量变化幅度最大,因此受汞干扰最严重的为紫花苜蓿。


图2   Hg2+胁迫对牧草丙二醛含量的影响
Fig.2 The effects of Hg2+ stress on the contents of MDA in pasture
由图3可知,在试验汞胁迫水平范围内,当汞胁迫浓度为64.0 mg·kg-1时,四种牧草脯氨酸含量最高,分别为对照组的7.48倍、5.63倍、3.42倍和4.02倍。其中,随汞胁迫浓度升高披碱草和高羊茅脯氨酸含量先升高后略下降再急剧升高。脯氨酸含量升高,体现植物抗氧化能力和渗透调节能力及对汞的耐受性,对植物具有保护作用。从高浓度胁迫下脯氨酸含量增长率分析,四种牧草中,羊草对汞胁迫抗逆调节能力最强。


图3   Hg2+胁迫对牧草脯氨酸含量的影响
Fig.3 The effects of Hg2+ stress on the contents of proline in pasture
3   结论
(1)不同浓度汞胁迫作用时对植物中汞累积有显著影响,四种牧草对土壤中汞具有一定吸附转移能力,其中汞胁迫浓度较低时(<16.0 mg·kg-1),紫花苜蓿吸附转移能力最强;汞胁迫浓度增高后(>16.0 mg·kg-1),披碱草对土壤中汞吸附转移最强。四种牧草对汞富集系数随汞胁迫浓度增高而逐渐下降,其中羊草最大富集系数最高。
(2)汞胁迫对不同牧草生理具有显著影响,当土壤中汞含量过高后,会对四种牧草生长产生毒害作用。在一定浓度汞胁迫作用下,牧草通过提高脯氨酸含量,促进抗氧化酶酶活,减缓汞胁迫造成的活性氧升高及膜脂过氧化,达到平衡细胞渗透压,从而维持植物正常生长所需环境。
内蒙古为产煤大省,煤电一体化经济发展模式的推广同时要对草原生态进行长远的规划和保护。面对与日俱增的燃煤发电量,燃煤释汞量也将随之增加,应采取适当措施,对燃煤电厂烟气排放中的汞含量加以控制,从源头制止燃煤电厂长期、低浓度汞排放对草原植被造成的影响。
致谢
殷立宝,禚玉群,徐齐胜,等.2013.中国燃煤电厂汞排放规律[J]. 中国电机工程学报,33(29):1-10. [Yin L B, Zhuo Y Q, Xu Q S, et al. 2013. Mercury emission from coal-fired power plants in China [J]. Proceedings of the CSEE, 33(29):1-10.]
张静静,郑娜,周秋红,等. 2014.内蒙古自治区原煤中汞含量分布及燃煤大气汞排放量估算[J]. 环境化学,09:1613-1614. [Zhang J J, Zheng N, Zhou Q H, et al. 2014, The Inner Mongolia autonomous region distribution of mercury content in the raw coal and coal to estimate atmospheric mercury emissions[J]. Environmental Chemistry, 09:1613-1614.]
Pirrone N, Cinnirella S, Feng X, et al. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmospheric Chemistry and Physics,10(13):5951-5964.
GB15618-2018.中华人民共和国国家标准土壤环境质量农用地土壤污染风险管控标准[S]. [GB15618-2018.Soil environmental quality Risk control standard for soil contamination of agricultural land of the People's Republic of China[S].]
黄玉芬. 2011.土壤汞对作物的毒害及临界值研究[D].福建农林大学[Huang Y F.2011. T Study on the toxicity and critical value of mercury in soil [D].Fujian Agriculture and Forestry University, ]
陈剑,王章玮,张晓山,等.2016. 大气汞浓度升高对水稻叶片生理效应的影响研究[J]. 生态毒理学报,11( 1) :133-140. [Chen J, Wang Z W, Zhang X S, et al. 2016. Physiological responses of rice leaves to the elevated gaseous elemental mercury in the atmosphere[J].Asian Journal of Ecotoxicology,11( 1) : 133-140 ]
刘芳,王书肖,吴清茹,等. 2013.大型炼锌厂周边土壤及蔬菜的汞污染评价及来源分析[J]. 环境科学,02:712-717. [Liu F, Wang S Q, Wu Q R, et al. 2013. Evaluation and source analysis of mercury pollution in the surrounding soil and vegetables of the large alchemist plant. [J]. Environmental Science, 02:712-717.]
洪曾纯.2012.福建16种蔬菜土壤汞安全临界值的研究[D].福建农林大学. [Hong Z C. 2012. Study on the safe threshold of mercury in 16 kinds of vegetables in Fujian. [D].Fujian Agriculture and Forestry University.]
GB5009.17-2014.食品中总汞及有机汞的测定[S]. [GB5009.17-2014. Determination of total mercury and organic mercury in food[S].]
HJ680-2013.土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法[S]. [HJ680-2013. Soil and sediment of mercury, arsenic, selenium, bismuth, antimony determination of microwave digestion/atomic fluorescence [S].]
华东师范大学生物系植物生理教研室.1980.植物生理学实验指导[M].北京:高等教育出版社,88. [Biology department of east China normal university. 1980.Plant physiology experiment guide[M]. Beijing: education press,88.]
刘国锋. 2006.重金属矿区铅污染特征及铅富集植物的筛选研究[D].福建农林大学, [Liu G F. 2006.Study on lead pollution characteristics of heavy metal mining areas and selection of lead enrichment plants[D]. Fujian Agriculture and Forestry University]
刘月莉.2008. 四川甘洛铅锌矿区植被生态调查及重金属超富集植物的筛选[D].四川农业大学,[Liu Y L.2008. The vegetation ecological investigation and the screening of heavy metal superrich plants in ganluo zinc deposit in sichuan province [D]. Sichuan Agricultural University]
杨保华.2004. 两种沉水植物对汞的耐受力及净化作用[D].湖南农业大学 [Yang B H. 2004.The tolerance and purification effect of two kinds of submerged plants on mercury [D]. HuNan Agricultural University]
闫丽岗.2009. 汞在土壤—植物中的分布、累积以及相关性研究[D].山西大学,[Yan L G.2009. Study on the distribution, accumulation and correlation of mercury in soil - plants [D]. ShanXi University]
陈宗英,张焕祯.2012. 汞污染土壤的萃取修复技术研究[J]. 地学前缘06:230-235. [Chen Z Y,Zhang H Z. 2012.Research on extraction and repair of mercury contaminated soil [J]. Earth Science Frontiers, 06:230-235.]
赵鲁,朱欣宇,谭晓东,等.2013.大豆和小麦对土壤中汞的吸收与富集研究[J]. 中国农学通报,18:45-49. [Zhao L, Zhu X Y, Tan X D, et al. 2013. Study on the absorption and enrichment of mercury in soil by soybean and wheat [J]. Chinese Agricultural Science Bulletin,18:45-49.]
Pavlish J H,Sondreal E A,Mann M D, et al. 2003. Status review of mercury control potions for coal-fired power plants[J].Fuel Processing Technology,82(2):89-165.
武永军,曹让,应旭霞,等. 2009.Hg胁迫对两种基因型小麦生长及其过氧化物酶活性的影响[J]. 西北农业学报,,04:171-174. [Wu Y G,Cao R, Ying X X, et al. 2009. Effects of Hg stress on the growth and peroxidase activity of two genotype wheat [J]. Acta Agriculturae Boreali-occidentalis Sinica, 04:171-174.]
Israr M,Sahi S,Datta R, et al. 2006. Bioaccumulation and physiological effects of mercury in Sesbania drummondii [J]. Chemosphere,65:591-598
庞欣,王东红,彭安.2001. 汞胁迫对小麦幼苗抗氧化酶活性的影响[J]. 环境化学,04:351-355. [Pang X, Wang D H, Peng A. 2001. Effect of mercury stress on antioxidant enzyme activity in wheat seedlings [J]. Environmental Chemistry, 04:351-355.]
稿件与作者信息
刘阳
LIU Yang
王道涵*
WANG Daohan*
王道涵,E-mail: wangdaohan@sina.com
杜俊楠
DU Junnan
基金项目: (美国)国家地理空气与水保护基金(GEFC30-14)
National Geographic Air and Water Conservation Fund (GEFC30-14)
出版历史
出版时间: 2018年9月20日 (版本2
参考文献列表中查看
地球环境学报
Journal of Earth Environment