研究论文 正式出版 版本 8 Vol 9 (6) : 580-588 2018
下载
河南三杨庄剖面光释光年代学研究
Optically stimulated luminescence dating of Sanyangzhuang profile,Henan Province
: 2018 - 10 - 12
: 2018 - 11 - 28
43 1 0
摘要&关键词
摘要:河南省安阳市内黄县三杨庄遗址是由于黄河下游洪水快速掩埋而保存的汉代文化遗址,是研究黄河流域历史气候变化与古河道变迁的理想载体。近年来,石英的光释光(OSL)测年技术广泛应用于水成沉积物的定年。本文选取了三杨庄文化遗址区的一个深度为10.4米的剖面,使用细颗粒石英单片再生剂量(SAR)法OSL技术测量了该剖面的8个样品的年龄,建立了剖面年代标尺,并与前人测得的加速器质谱(AMS)14C年龄进行了对比,结果显示:(1)三杨庄剖面年龄分布在约12.43-1.21 ka,沉积于整个全新世时期,剖面沉积速率波动幅度较大,在约3.91-3.15 ka 期间(深度9.60-5.00 m)沉积速率很快,而3.91 ka之前的早-中全新世时沉积速率较慢;(2)剖面深度8.60-5.00 m间,14C年代相对OSL年代出现严重高估,高估值随深度增加而增大,由约2 ka变化到约7 ka,我们推断三杨庄剖面14C年代的高估可能是由于碳库效应的影响;(3)三杨庄剖面细颗粒石英OSL测年结果指示细颗粒石英在河流-洪积相沉积物测定中的潜力。
关键词:全新世;光释光测年;14C测年;碳库效应;三杨庄
Abstract & Keywords
Abstract: Background,aim,and scope Sanyangzhuang archaeological site of the Han Dynasty was deeply buried and well preserved by the Yellow River alluvium. It has the ruins of ancient villages from the late Western Han Dynasty to the early Eastern Han Dynasty, and provides ideal material for studying the historical climate and river channel changes in the lower reach of the Yellow River. Most of the existing studies on Sanyangzhuang site focus on the division of stratigraphic sequence and the description of site villages. Except for some absolute age data measured by accelerator mass spectrometry (AMS) 14C method, there is still a lack of support for high resolution age data. Quartz optically stimulated luminescence(OSL) dating protocol (OSL) has been successfully applied to the dating of various aeolian sediments, such as loess, sand dunes, etc. The precise dating of hydatogen sediments and some human cultural sites often use 14C dating method. In recent years, OSL dating protocol has been widely applied to determine the ages of alluvial/fluvial sediments. In this study, we tried to obtain an OSL chronology of the 10.40 m Sanyangzhuang archaeological profile and to compare it with AMS 14C chronology. Materials and methodsWe collected OSL dating samples near a courtyard in the northeast corner of Sanyangzhuang archaeological site. The luminescence sample tubes were processed under subdued red light conditions in the luminescence laboratory. The samples (~100 g) were first treated with 30% w.w. H2O2 and 30% v.v. HCl to remove organic materials and carbonates, respectively. The samples were washed with distilled water until reaching pH neutral, and then 4-11 μm diameter polymineral grains were separated according to Stokes’ law. These grains were immersed in 30% hydrofluorosilicic (H2SiF6) for 3-5 days to extract the fine-grained quartz component. The resultant fluoride was removed using 30% v.v. HCl. Finally, the purified quartz was deposited on 9.7-mm-diameter stainless steel discs using ethanol and dried prior to measurement. All of the OSL measurements were performed using an automated Daybreak 2200 OSL reader equipped with infrared (880±60 nm) and blue (470±5 nm) LED units and a 90Sr/90Y beta source for irradiation. For dose rate determination, U and Th concentration was measured using inductively coupled plasma mass spectrometry (ICP-MS), and inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the K concentration. The fine-grained quartz single aliquot regenerative dose(SAR) OSL dating protocol is used for obtaining the eight ages of the upper 10.40 m sediments at Sanyangzhuang (SYZ) archaeological site. Conventional tests in fine-grained quartz SAR protocol and the OSL ages variation with depth indicate the reliability of quartz OSL dating in this study. Results (1) The equivalent dose distribution of the 8 samples in Sanyangzhuang profile is about 37.7-3.5 Gy, and the dose rate fluctuates greatly, which is 2.9-4.8 Gy/ka. According to the values of equivalent dose and dose rate, the ages of eight samples can be obtained. Quartz OSL dating results show that, the profile deposited between 12.43-1.21 ka, covering almost the entire Holocene, with sediment accumulation rate fluctuated rapidly. Except for the samples at 8.60 m, the age of the remaining seven samples basically conforms to the stratigraphic sequence. The cause of age reversal at 8.6 m is unknown, and this study will treat it as an abnormal age point for the time being. During the period of about 3.91-3.15 ka (depth of 9.60-5.00 m), the deposition rate is extremely high, while that before about 3.91 ka and after about 3.15 ka is low. (2) The 14C ages of depth between 8.60-5.00 m is significantly overestimated, the 14C age at 8.50-4.96 m of Sanyangzhuang section is 10.2-5.16 ka BP, and when compared with the OSL ages the difference between them generally becomes larger as depth increasing, varaying from about 2 ka to 7 ka. Discussion In the measurement of hydrous sediments, organic matter samples such as peat used in 14C dating could be mixed with samples from older strata before joining the closed watershed system and are polluted by “old carbon” from surrounding rocks, which makes the samples older. It is suggested that the discrepancy between OSL ages and 14C ages mainly results from radiocarbon reservoir effect. The OSL dating results of Sanyangzhuang section indicate the great potential of fine-grained quartz dating into fluvial-alluvial sediments. Conclusions Fine quartz OSL dating results show that, the profile deposited between about 12.43-1.21 ka, covering almost the entire Holocene, with sediment accumulation rate fluctuated rapidly, the accumulation rate of about 3.91-3.15 ka is very fast. It is suggested that the discrepancy between OSL ages and 14C ages mainly results from radiocarbon reservoir effect. Recommmendations and perspectives In the future, more efforts need to be put on the high-resolution construction of Sanyangzhuang archaeological site. Fine-grained quartz OSL dating into fluvial-alluvial sediments has great potential. Meanwile, radiocarbon reservoir effect of hydrogenic sediments needs to be studied further.
Keywords: Holocene; OSL dating; 14C dating; radiocarbon reservoir effect; Sanyangzhuang
石英的光释光(OSL)测年技术目前已经被成功运用于测定各种风成沉积物的年龄中,如黄土、沙丘等(Lu et al,2006;Lu et al,2007;杜金花等,2010;Li et al,2011;Sun et al,2012;Kang et al,2015;),而目前水成沉积物测年以及一些人类文化遗址区的准确定年多使用14C定年手段。近年来随着OSL测年技术的发展,石英的单片再生剂量测年法(SAR)逐渐被运用于古洪水沉积物的年代学研究中(陈莹璐等,2017;Shen et al ,2015;查小春等,2014;黄春长等,2012;王恒松等,2012;张玉柱等,2012;周亮等,2012)。河南省安阳市内黄县三杨庄遗址完好地保存了西汉末期至东汉初期古代村落的遗址形貌。一些考古学家认为汉代黄河水患频繁,在西汉后新莽时期(公元11年),黄河流经魏郡处决堤,洪水在3年内逐渐漫过三杨庄遗址地区,使得当时的房屋村落的原貌得以保留(符 奎,2014),该遗址考古学意义重大。然而,已有的对三杨庄遗址的研究大多集中在地层层序的划分和遗址村落情况描述上(Kidder,2012a,2012b;刘海旺和张履鹏,2008),除仅有的用加速器质谱(AMS)14C法测得的一些绝对年龄数据外(刘耀亮,2013),缺少高精确度的年龄数据的支撑。
本文采集了三杨庄遗址东北角一处院落附近的剖面释光样品,运用细颗粒(4-11μm)石英OSL测年法获得剖面年代,并与前人已经发表的同一剖面的14C测年数据对比,探讨并说明了OSL测年法在河流相-洪积相沉积物中的良好适用性。


图1   研究区与三杨庄剖面位置
Fig.1 Study area and location of Sanyangzhuang profile
1   材料与方法
1.1   区域背景
三杨庄遗址(35°40′57″-59″ N,114°45′97-100″ E,平均海拔50-70 m)所在地区河南安阳市内黄县地处华北平原中部,地势平坦。总体地势自西南向东北倾斜,地貌类型以平原为主,第四系黄土广泛堆积。该地区处于暖温带季风气候区,季节分明,降水变率大,降水一年四季分配不均匀,年均温13.7 ℃。
三杨庄文化遗址位于内黄县西南部的梁庄镇三杨庄村,处于黄河故道,是在2003年硝河水利工程施工早期被当地人民发现,当即引起了国内外考古界的广泛关注(刘耀亮等,2013)。三杨庄遗址现已发掘面积超过0.9公顷,在遗址区域范围内发掘出14个汉代建筑以及4座院落。三杨庄遗址也是迄今为止全国范围内发掘出的唯一汉代村落文化遗址,被称作“中国的庞贝古城”(刘海旺和张履鹏,2008),为研究我国古代村落文化,黄河历史变迁提供了良好的材料。
1.2   样品采集
三杨庄剖面(35º43'59.56'' N,114º46'7.73'' E,海拔52±5 m)采自三杨庄汉代遗址东北角的一处庭院附近,与前人已发表的14C年代数据的剖面为同一剖面(35º43'39.12'' N,114º46'24.22'' E,海拔57m,刘耀亮等,2013),剖面包含剖面1和剖面2两个连续剖面,在地层深度0-3.80 m,3.80-10.40 m处分别采集释光样品和含水量样品。释光样使用直径5 cm,长度20 cm的钢管采集。含水量样品采集用铝盒密封包装,最大程度防止水分蒸发,之后在实验室测得其湿重和干重。具体的剖面描述如下:
10.40-9.86 m,棕褐色黏土,致密,均一,其中11.10-10.30 m含直径约小于3 cm的钙结核;
9.86-8.90 m,土黄色粗粉砂为主,松散,质地均一,夹杂黄色斑块;
8.90-7.80 m,浅棕褐色(略发黑)粉砂质水平带状黏土,致密;
7.80-7.60 m,土黄色粗粉砂,松散,均一,偶夹黄色斑块;
7.60-7.30 m,土黄色粉砂,松散,均一,偶夹黄色斑块;
7.30-6.90 m,棕褐色(发黑)粉砂质粘黏土,致密,均一;
6.90-5.90 m,土黄色粗粉砂,松散,均一;
5.90-4.94 m,土黄色粉砂,松散,均一,偶夹2-3条厚约5 cm的棕黄色黏土条带;
4.94-4.28 m,棕色粉砂质黏土,土黄色粗粉砂,松散,均一;
4.28-1.24 m,土灰色向青色过渡的粉砂质黏土,疑似洪水过后浅滞水沉积,中间夹有粗粉砂,疑似风成黄土;
1.24-0.50 m,青色粉砂,松散,均一,偶夹黄色斑块;
0.50-0.00 m,土黄色粗粉砂,松散,均一,细小根系发育,0.30-0.0m可能为近源风成沙。


图2   三杨庄剖面地层与年代
Fig.2 Stratigraphy and chronology of the Sanyangzhuang section
1.3   石英OSL测年
1.3.1   前处理
光释光样品已经建立起一套较为完善的前处理流程(Lu et al,2007;Aitken,1985,1998;Wintle,1997)。在实验室弱红光条件下将不锈钢管中样品掏出,去掉两侧钢管末端可能曝光的约3 cm 的样品。分出100 g 样品加入量程为1000 ml 烧杯中并加入500 ml 蒸馏水浸泡数小时。之后,先用30%(质量分数)的双氧水去除有机质,再用30%(体积分数)的盐酸去除碳酸盐类矿物,然后用蒸馏水将悬浊液洗至中性。再根据Stokes定理,分离出4-11 μm 的细颗粒混合矿物。再将它们浸泡在氟硅酸中3-5 天,去除长石类等矿物,提纯细颗粒石英。最后用酒精将提纯的细颗粒石英样品均匀沉淀在直径为9.7 mm 的不锈钢片上,供测量使用。
1.3.2   测量设备
本文细颗粒石英的释光信号测量和 β 辐照在Daybreak 2200 自动化释光测量系统上进行。其红外光源波长880 ± 60 nm,蓝光光源波长470±5 nm,激发功率最大为45 m·W/cm2。实验过程中均选用80%激发功率,激发温度为125 ℃。释光信号通过QA9235光电倍增管并在其前段附加两个3 mm厚的U-340滤光片来检测。该系统配置的90Sr/90Y辐照源剂量率为0.035 Gy/s。
表1   本研究测量三杨庄样品所使用的石英单片再生(SAR)法光释光(OSL)等效剂量(De)测试程序,修改自Murray and Wintle (2000)和Wintle and Murray (2006)
步骤 Step处理 Treatment信号 Signal
1再生剂量 Give dose, Di-
2260ºC预热10 s Preheat, 260ºC, 10 s-
3125ºC激发60 s Stimulate, 125ºC, 60 sLi
4试验剂量 Give test dose, Dt-
5220ºC预热10 s Preheat, 220ºC, 10 s-
6125ºC激发60 s Stimulate, 125ºC, 60 sTi
1.3.3   等效剂量测定
近年来,光释光测年技术发展迅速,测年技术以感量校正的单片再生剂量(SAR)法
为主,此方法大大提高了释光测年精度和适用性。本文采用细颗粒石英的SAR法(表1)测试了三杨庄剖面8个释光样品。天然和再生剂量的预热温度采取260 ℃加热10s,来消除细颗粒石英的热不稳定信号,试验剂量的预热温度采取220 ℃加热10s(Wang et al,2006)。测量样品的红外释光(IRSL)信号强度,来检测提取的石英颗粒的纯度。从图3可看出,三杨庄剖面不同深度8个样品的红外释光排空比率均在0.9-1.1之间,符合石英纯度检验的要求。同时,三杨庄剖面代表性样品SYZ-320的细颗粒(4-11μm)石英30 Gy再生剂量的IRSL信号已接近仪器本底的水平,信号强度非常低,说明该样品中长石的释光信号可以忽略不计,样品的石英颗粒纯度已达到实验要求。
对SAR法的适用性进行常规检验的主要参数有:剂量恢复比率、循环比和回复比。所有样品的OSL信号在10 秒之内便衰减至接近仪器本底水平(如图4所示的样品SYZ-320),表明三杨庄剖面的细颗粒石英信号均以快速组分为主。图5所示的样品SYZ-320和SYZ-1040的剂量恢复比率都在0.9-1.1之间,所有8个样品的循环比率均在0.9-1.1之间,回复比率数值均小于3%,满足实验要求。另外,生长曲线均使用单指数拟合,由于测量样品的最大等效剂量值仅不到40 Gy(表2),远未达饱和。上述细颗粒石英OSL的一系列性质表明了SAR法测年在本研究中的适用性。
1.3.4   剂量率的测定
环境剂量率是指样品每年吸收的周围环境辐射剂量,是由本身及周围沉积物中放射性核素(238U、232Th 和 40K)衰变产生的电离辐射所提供的,同时也有宇宙射线的少量贡献。本研究采用电感耦合等离子质谱仪(ICP-MS)测定了样品U和Th含量,K含量则采用电
a:所有样品的光释光红外释光排空比率(Duller,2003);
b:样品SYZ-320细颗粒石英30Gy再生剂量IR和OSL衰减曲线。
a: OSL infrared (IR) depletion ratios (Duller, 2003) for all the samples, plotted against depth.
b: Regenerative dose (30 Gy) infrared stimulated luminescence (IRSL) and OSL decay curves of the typical sample SYZ-320.


图3   三杨庄剖面释光样品细颗粒石英纯度的释光特性测试
Fig.3 Fine-grained quartz purity tests of luminescence samples from the Sanyangzhuang section
a:所有样品的光释光红外释光排空比率(Duller,2007);b:样品SYZ-320 细颗粒石英30 Gy 再生剂量IR 和OSL 衰减曲线。a: OSL infrared (IR) depletion ratios (Duller, 2007) for all the samples,plotted against depth;b: Regenerative dose (30 Gy) infrared stimulated luminescence (IRSL)and OSL decay curves of the typical sample SYZ-320.


图4   三杨庄剖面典型样品SYZ-320的石英OSL等效剂量确定
Fig.4 Quartz OSL De determination of sample SYZ-320 from the Sanyangzhuang section
a: 样品SYZ-320 天然和再生剂量OSL 衰减曲线,x 坐标轴以对数刻度表示;b: 生长曲线和等效剂量的确定,生长曲线使用单指数拟合。a: Natural and regenerative-dose OSL decay curves of SYZ-320. Notethat the x-axis is plotted as a log scale;b: Dose-response curve and De determination. A single exponential wasfitted to the regenerative-dose corrected OSL intensities.
感耦合等离子发射光谱仪(ICP-AES)测定。根据Aitken(1985)提出的换算关系计算出环境剂量率,同时考虑了宇宙射线对环境剂量率的贡献(Prescott and Hutton,1988,1994),并考虑含水量(实测值)对剂量率的影响,得出样品的年剂量率(见表2)。对于细颗粒石英,α 辐射的有效系数均采用0.04(Ree-Jones,1995)。


图5   三杨庄剖面石英SAR法OSL等效剂量测量过程中的常规检验
Fig.5 Conventional tests of quartz SAR OSL dating samples from the Sanyangzhuang profile
a: 两个代表性样品SYZ-320 和SYZ-1040 的剂量恢复比率;b: 所有样品全部测片循环比率;c: 所有样品全部测片回复比例。a: Dose recovery ratios for the two representative samples SYZ-320and SYZ-1040;b: OSL recycling ratios for all the aliquots of the eight samples;c: Recuperation ratios for all the aliquots of the eight samples.
表2   三杨庄样品的石英OSL年代及其相关参数
样品号深度含水量剂量率等效剂量年龄
IDDepth/cmU/ppmTh/ppmK/%Water content/%Dose
rate/Gy•ka-1
Dose/GyAge/ka
SYZ-1401401.89±0.019.43±0.101.69±0.0218±52.92±0.143.54±0.151.21±0.08
SYZ-3203204.64±0.099.50±0.031.63±0.0012±53.87±0.207.42±0.301.92±0.13
SYZ-5005002.29±0.0310.80±0.251.78±0.0418±53.16±0.169.96±0.403.15±0.20
SYZ-6206201.97±0.079.31±0.331.55±0.006±53.11±0.179.76±0.403.14±0.22
SYZ-7407402.20±0.0210.63±0.151.74±0.0218±53.06±0.159.11±0.372.97±0.19
SYZ-8608603.59±0.0810.91±0.221.84±0.0218±53.57±0.189.25±0.372.59±0.17
SYZ-9609603.98±0.0621.10±0.211.45±0.016±54.77±0.2718.64±0.763.91±0.27
SYZ-104010402.52±0.0711.71±0.351.51±0.0118±53.03±0.1537.67±1.5212.43±0.80
注:1 ppm=1 mg∙kg−1
Note: 1 ppm =1 mg∙kg−1.
2   结果
如表2所示,三杨庄剖面8个细颗粒石英OSL等效剂量分布在约37.7-3.5 Gy,剂量率波动幅度较大,分布于2.9-4.8 Gy/ka。根据等效剂量和剂量率的值,可以得到8个样品的年代(表2,图2)。从年代结果可以看出,三杨庄剖面年龄覆盖整个全新世,年龄范围是12.43±0.80 ka-1.21±0.08 ka,除8.60 m处样品外,剖面其余7个样品的年龄在误差范围内均呈现上老下新的特点,基本符合地层层序。8.60 m处的年代倒转原因尚未知,本研究暂将其做为一个异常年龄点处理。三杨庄剖面的沉积速率波动幅度较大,在约3.91-3.15 ka期间(深度9.60-5.00 m)沉积速率很快,而约3.91 ka之前的早-中全新世和约3.15 ka之后的晚全新世时沉积速率较慢。
3   讨论
3.1   剖面14C年龄与OSL年龄对比
14 C测年是通过植物根系残体、孢粉、生物壳体等样品中遗留的14C元素的含量,根据样品中14C元素的衰变程度来测定沉积物距今的年龄(Martin,1999)。对三杨庄文化遗址而言,三杨庄剖面8.50-4.96 m处前人已经得到的14C年龄为10.2-5.16 ka BP(图2,刘耀亮,2013),而本文测得的7.40-5.00 m处OSL年龄为约3.0ka BP,8.60-7.40 m处年龄可能为约3.8-3.0 ka之间,可以明显看出,14C年代相对OSL年代存在显著的高估,并且高估值随深度增加而增大,由约2 ka变化到约7 ka。
碳库效应是水成沉积物14C方法测年结果的重要影响因素之一。张家富等(2007)和Zhang et al.(2012)对江苏南京固城湖的湖心岩芯样品和罗布泊干盐湖剖面的样品进行了OSL和AMS 14C测年,研究发现,固城湖同样深度样品的14C年龄比OSL年龄老了约2000年;罗布泊剖面同一深度样品14C年龄较OSL年龄的高估值随深度增加而增大,最高达20 ka BP。Long(2012)测得的青藏高原南部当惹雍错湖相沉积物的14C年龄比OSL年龄老了4000多年,并提出对于同一个湖泊,碳库效应的大小也会随时间变化呈现不同。由此看来,在测量水成沉积物时,14C测年所采用的有机质样品如泥炭等在加入封闭流域体系之前,与较老地层的样品发生了混合,受到了来自周围围岩的“老碳”的污染,使得样品年龄较老,我们认为这也可能是导致本研究中14C年代相对OSL年代明显偏老的原因。
3.2   河流相-洪积相沉积物的OSL测年
研究显示,对于水动力搬运沉积形成的沉积物而言,细颗粒石英的OSL信号比粗颗粒的冲积砂石英晒退得更为彻底(雷生学,2008;赵 华等,2011;Hu et al,2010)。本研究中,三杨庄剖面的沉积地层存在洪水沉积下粗上细的二元结构特征,判断地层是由古洪水动力沉积形成。因此,每一个洪水沉积单元中,样品中的细颗粒石英在水中悬浮搬运,受阳光照射时间相当较长,信号晒退归零机制较好。这可能是本研究中石英OSL年代测试结果比较理想的重要前提。本研究体现了细颗粒石英在测量河流-洪积相沉积的巨大潜力。
4   结论
对三杨庄剖面采用细颗粒石英进行OSL测年,SAR法的常规参数检验结果表明该方法的适用性。OSL测年结果显示剖面的年龄范围是12.43±0.80 ka-1.21±0.08 ka,覆盖整个全新世,约3.91-3.15 ka堆积速率很快。
将剖面在8.60-5.00 m处的OSL年龄与前人已经发表的14C年龄进行对比,表明14C年代存在显著高估,高估值达约2-7 ka,我们认为14C年代的高估是由于样品受流域碳库效应的影响。
致谢
陈莹璐, 黄春长, 张玉柱,等. 2017. 汝河全新世古洪水沉积学与光释光测年研究 [J]. 地质学报, 91(10):2531-2367. [Chen Y L,Huang C C,Zhang Y Z,et al. 2017. Sedimentology and OSL dating study of the Holocene palaeoflood on the Ruhe River [J]. Acta Geologica Sinica,91(10): 2531-2367.]
杜金花, 卢演俦, 王旭龙,等. 2010. 晋豫间黄河峡谷黄土状沙丘的光释光年代学探讨 [J]. 第四纪研究, 30(5): 946-955. [Du J H, Lu Y C, Wang X L, et al. 2010. Optically Stimulated Luminescence Dating of Loess-like Sand-dune Along the Yellow River Valley Between Henan and Shannxi Provinces [J]. Quaternary Sciences,30(5): 946-955.]
符 奎. 2014. 三杨庄遗址形成的原因与过程 [J]. 南昌师范学院学报(社会科学), 35(4): 157-160. [Fu K. 2014. On the reason and process of the formation of the Sanyangzhuang site [J]. Journal of Nanchang Normal University( Social Sciences), 35(4): 157-160.]
黄春长, 李晓刚, 庞奖励,等. 2012. 黄河永和关段全新世古洪水研究 [J]. 地理学报, 67(11):1493-1504. [Huang C Z, Li X G, Pang J L, et al. 2012. Palaeoflood sedimentological and hydrological studies on the Yongheguan Reach in the middle Yellow River [J]. Acta Geographica Sinica, 67(11): 1493-1504.]
雷生学. 2008. 长江流域南京钻孔年轻河流沉积物的光释光测年研究 [D]. 北京:中国地震局地质研究所.[Lei S X. 2008. Optical dating research of quartz from young fluvial sediments of the Yangtze River in Nanjing city, China [D]. Beijing: Institute of Geology, China Earthquake Administration.]
刘海旺, 张履鹏. 2008. 国内首次发现汉代村落遗址简介 [J]. 古今农业, (3):68-71. [Liu H W, Zhang L P. 2008. The domestic first discovery of Han Dynasty village site [J]. Ancient And Modern Agriculture, (3): 68-71.]
刘耀亮, 许清海, 李曼玥, 等. 2013. 河南省内黄县三杨庄全新世以来的孢粉学记录 [J]. 第四纪研究, 33(3): 536-544. [Liu Y L, Xu Q H, Li M Y, et al. 2013. Holocene Pollen Record of The Sanyangzhuang Site in Neihuang County,Henan Province [J]. Quaternary Sciences, 33(3): 536-544.]
刘耀亮. 2013. 河南三杨庄全新世以来的气候变化与洪水事件的沉积记录 [D]. 石家庄:河北师范大学. [Liu Y L. 2013. Holocene Climate Change and Flood Events Documented by Sedimentary Record in Sanyangzhaung Site, Henan Province, China [D]. Shijiazhuang: Hebei Normal University.]
王恒松, 黄春长, 周亚利, 等. 2012. 渭河中游全新世黄土剖面光释光测年及记录的古洪水事件 [J]. 地质学报, 86(6): 994-1004. [Wang H S, Huang C C, Zhou Y L, et al. 2012. OSL dating of Holocene loess-paleosol profiles in the middle reaches of Weihe River and paleoflood events [J]. Acta Geologica Sinica, 86(6): 994-1004.]
查小春, 黄春长, 庞奖励. 2007. 关中西部漆水河全新世特大洪水与环境演变 [J]. 地理学报, 62(3): 291-300. [Zha X C,Huang C C,Pang J L. 2007. Holocene extreme floods and environmental change of Qishuihe River in western Guanzhong basin [J]. Acta Geographica Sinica, 62(3):291-300.
赵 华, 卢演俦, 王成敏, 等. 2011. 水成沉积物释光测年研究进展与展望 [J]. 核技术, 34(2): 82-86. [Zhao H, Lu Y C, Wang C M, et al. 2007.A review of OSL dating for water-laid deposits: progress and prospect [J]. Nuclear Techniques, 34(2): 82-86.
张家富, 周力平, 姚书春, 等 .2007. 湖泊沉积物的14C和光释光测年-以固城湖为例 [J]. 第四纪研究, 27(4): 522-528. [Zhang J F, Zhou L P, Yao S C, et al. 2007. Radiocarbon and optical dating of lacustrine sediments-a case study in lake Gucheng [J]. Quaternary Sciences, 27(4): 522-528.
张玉柱, 黄春长, 庞奖励, 等. 2012. 泾河下游全新世古洪水滞流沉积物研究 [J]. 土壤通报, 26(1): 101-105. [Holocene paleoflood slackwater deposit in lower reaches of Weihe River [J]. Chinese Journal of Soil Science, 26(1): 101-105.]
周亮, 黄春长, 周亚利, 等. 2013.汉江上游安康东段古洪水事件光释光测年研究 [J].地质学报,87(11): 1703-1714.[OSL dating of the palaeoflood events in the Ankang east reach in the upper Hanjiang River valley Acta Geologica Sinica,87(11): 1703-1714.]
Aitken M J. 1985. Thermoluminescence dating [M]. New York: Academic Press.
Aitken M J. 1998. An Introduction to Optical Dating [M]. London: Oxford University press.
Duller G. 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements [J]. Ancient TL, 25(1): 15-24.
Hu G,Zhang J F, Qiu W L, et al. 2010. Residual OSL signals in modern fluvial sediments from the Yellow River(Huang He) and the implications for dating young sediments [J].Quaternary Geochronology, 5 (2010): 187-193.
Kang S G, Wang X L, Lu Y C, et al. 2015. A high-resolution quartz OSL chronology of the Talede loess over the past-30 ka and its implications for dust accumulation in the Ili Basin, Central Asia [J]. Quaternary Geochronology, 30: 181-187.
Kidder T R, Liu H W, Xu Q H, et al. 2012b.The Alluvial Geoarchaeology of the Sanyangzhuang Site on the Yellow River Floodplain, Henan Province, China [J]. Geoarchaeology, 27(4): 324-343.
Kidder T R. 2012a. Sanyangzhuang early farming and a Han settlement preserved beneath Yellow River flood deposits [J]. Antiquity, 86(331): 30-47.
Li S H, Sun J M, Li B .2011. Holocene environmental changes in central Inner Mongolia revealed by luminescence dating of sediments from the Sala Us River valley [J]. The Holocene, 2011, 22(4): 397-404.
Lu H Y, Stevens T, Yi S W, et al. 2006. An erosional hiatus in Chinese loess sequences revealed by closely spaced optical dating [J]. Chinese Science Bulletin, 51(18): 2253-2259.
Lu Y C, Wang X L, Wintle A G. 2007.A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau [J]. Quaternary Research, 67(1): 152-160.
Long H, Lai Z P, Wang N A,et al. 2011. A combined luminescence and radiocarbon dating study of Holocene lacustrine
sediments from arid northern China [J]. Quaternary Geochronology, 6:1-9.
Lu H Y, Stevens T, Yi S W, et al. 2006. An erosional hiatus in Chinese loess sequences revealed by closely spaced optical dating [J]. Chinese Science Bulletin, 51(18): 2253-2259.
Lu Y C, Wang X L, Wintle A G. 2007. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau [J]. Quaternary Research, 67(1): 152-160.
Martin C W. 1999. Radiocarbon dating: Recent applications and future potential [J]. Geoarchaeology, 4(4): 371-373.
Murray A S, Wintle A G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol [J]. Radiation Measurements, 32(1): 57-73.
Prescott J R, Hutton J T. 1988. Cosmic ray and gamma ray dosimetry for TL and ESR [J]. Nuclear Tracks and Radiation Measurements, 14(1-2): 223-227.
Prescott J R, Hutton J T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations [J]. Radiation measurements, 23(2): 497-500.
Rees-Jones J. 1995. Optical dating of young sediments using fine-grain quartz [J]. Ancient TL, 13(2): 9-14.
Shen H Y, Yu L P, Zhang H M, et al. 2015. OSL and radiocarbon dating of flood deposits and its paleoclimatic and archaeological implications in the Yihe River Basin, East China [J]. Quaternary Geochronology,30:398-404.
Sun Y B, Clemens S C, Morrill C, et al. 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon [J]. Nature Geoscience, 5: 46–49.
Wang X L, Lu Y C, Zhao H. 2006. On the performances of the single-aliquot regenerative-dose (SAR) protocol for Chinese loess: fine quartz and polymineral grains [J]. Radiation Measurements, 41(1): 1-8.
Wintle A G, Murray A S. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols [J]. Radiation Measurements, 41(4): 369-391.
Wintle A G. 1997. Luminescence dating: laboratory procedures and protocols [J]. Radiation Measurements, 27(5–6): 769-817.
Zhang J F, Liu C L, Wu X H, et al. 2012. Optically stimulated luminescence and radiocarbon dating of sediments from Lop
Nur (Lop Nor), China [J]. Quaternary Geochronology,10: 150-155.
稿件与作者信息
杨 铭1, 2*
YANG Ming1, 2*
杨 铭,E-mail: yangming@ieecas.cn
王松娜1, 2
WANG Songna1, 2
康树刚1
KANG Shugang1
刘海旺3
LIU Haiwang3
王旭龙1
WANG Xulong1
国家自然科学基金项目(41772177);中国科学院青年创新促进会项目
National Natural Science Foundation of China (41772177); Youth Innovation Promotion Association CAS
出版历史
出版时间: 2018年11月28日 (版本8
参考文献列表中查看
地球环境学报
Journal of Earth Environment