研究论文 正式出版 版本 4 Vol 10 (4) : 419-426 2019
下载
有机磷和无机磷材料修复铅污染土壤
Remediation of lead contaminated soil by organic and inorganic phosphorus materials
: 2018 - 10 - 21
: 2019 - 01 - 04
: 2019 - 01 - 12
225 0 0
摘要&关键词
摘要:近年来,城市工业污染场地严重威胁着人居环境安全,其中土壤铅污染问题比较突出。为加强对铅污染土壤的风险管控,采取磷酸氢二钠(DSP)和植酸(PA)钝化处理铅污染土壤,采用BCR形态分析法和固体废物浸出毒性浸出方法-醋酸缓冲溶液法(HJ/T 300—2007)评价土壤铅赋存化学形态和浸出毒性。结果表明:DSP与PA对污染土壤pH的影响差异比较明显,但均能有效降低污染土壤的铅浸出浓度,并满足生活垃圾填埋场入场标准限值(0.25 mg·L-1);随添加比例增加,DSP与PA均能促使土壤中铅元素由活泼态(酸可提取态和可还原态)向稳定态(残渣态)转变,且PA钝化效果优于DSP;两种磷材料处理后的土壤浸出毒性与酸可提取态均表现出显著相关性,同样的PA优于DSP。可见,PA对铅污染土壤具有良好的固铅作用。
关键词:磷酸氢二钠;植酸;铅污染土壤;浸出毒性;化学形态
Abstract & Keywords
Abstract: Background, aim, and scope Recently, the contaminated sites are seriously threatening the safety of urban residential environment, and the problem of lead contamination soil is more prominent. In order to study the stabilizing feasibility and efficiency of phytic acid (PA) for remediation of lead- contaminated soil, the leaching toxicity and corresponding chemical morphological changes of Pb contaminated soils treating separately by PA and disodium hydrogen phosphate (DSP) were studied. Ultimately, it was used to offer a theoretical foundation for further practice of solidification/stabilization remediation of lead-contaminated soil. Materials and methods The lead-contaminated soils, collected from a battery plant in southwest China, were treated by DSP and PA with different proportions (0, 1%, 3%, 5%, 7% and 9%, all of which were mass percentages). The lead chemical forms and its leaching concentration of Pb were analysed by BCR sequential extraction method and Solid waste-Extraction method for leaching toxicity – acetic acid buffer solution method (HJ/T 300—2007). Results The results showed that the tested soil pH were significantly different with DSP and PA, and the leaching concentration of Pb decreased obviously, which met the maximum concentration limits(0.25 mg·L-1) defined by Leachate Treatment Project Technical Specification of Municipal Solid Waste Landfill. The results of BCR speciation analysis showed that both DSP and PA promoted the transformation of Pb from active state to steady state in tested soil, and the effect of PA is better than DSP. Linear regression analysis showed that the positive relationship between the leaching toxicity of the experimental soil and the acid-extractable states, and correlation coefficient in the PA-treated soils were better than DSP. Discussion Although the variations of pH in the tested soil with PA and DSP were obvious different, the leaching concentration of Pb in tested soils decreased significantly, and the maximum drop was up to 98.3% and 98.4% respectively. The main reason was that the chemical forms of Pb in the original soil were reducible fraction (41.0%) > acid-extractable fraction (38.9%) > oxidizable fraction (10.9%) > residual fraction (9.2%). However, due to stabilization by PA and DSP, the chemical forms of lead in tested soil changed significantly. When the ratio of DSP was 7%, the residual state accounted for 52.3% and the acid-extractable state was only 1.4%. When the addition ratio of PA was 9%, the residual state accounted for 67.1%, and the acid-extractable state was only 1.5%. Conclusions Therefore, the leaching toxicity and chemical forms of Pb on contaminated soils stabilizing by DSP and PA showed that the PA was an organic acid, but its unique phosphate group structure made it immobilize effectively Pb, and keep the pH fall between 4 and 6. Recommendations and perspectives This research would have found that PA has good stabilizing efficiency on lead contaminated soils.
Keywords: disodium hydrogen phosphate; phytic acid; lead contaminated soil; leaching toxicity; chemical forms
2014年4月17日,中华人民共和国环境保护部和中华人民共和国国土资源部(2014-04-17)共同发布的《全国土壤污染状况调查公报》显示:重污染企业用地、工业废弃地等土壤污染点位超标率高于30%,而且涉及主要污染物复杂多样,其中土壤铅污染比较突出。随着城市化进程的不断深入,城市扩容促使大量涉污企业“退二进三”或“退城入园”而搬迁、关闭,遗留工业污染场地再开发利用过程中的有毒有害物质迁移可能对生态环境和人体健康造成危害,其中铅污染土壤问题比较突出(郑立保,2013;刘庚,2014;杨孟,2014;孙荣基,2017)。
为了加强建设用地铅污染土壤的环境风险管控,国内外已经开展了一系列的铅污染土壤固化/稳定化修复研究,使用较为广泛的铅元素钝化材料包括海泡石(王林,2012;孙约兵,2014)、膨润土(吕高明,2011;赖胜强,2016)、含磷材料(Cao et al,2009;Hashimoto et al,2009;宋波,2015;Zhang et al,2015;曹俊,2016),以及工业副产品(Gray et al,2006;罗惠莉,2011)等,其中含磷物质因经济高效、易于获得等优点而被广泛关注。然而,含磷材料钝化修复铅污染土壤的研究主要集中在磷酸、磷酸二氢钙、磷酸二氢钾、磷灰石、羟基磷灰石和磷矿石等无机磷材料(Cao et al,2009;Hashimoto et al,2009;宋波,2015;Sima et al,2015;Zhang et al,2015;曹俊,2016),而有机磷材料钝化修复铅污染土壤的研究还比较少见。肌-肌醇六磷酸(简称“植酸”)是环境中比较丰富的有机磷物质,属于强酸类型,因自身具有六个磷酸基团而具备很强的螯合能力(严玉鹏,2012),在水处理和土壤环境保护领域有着比较广泛的应用(Seaman et al,2003;Nolan et al,2010)。
为了探讨植酸(PA)钝化修复铅污染土壤的可行性及稳定效果,选择西南地区某铅蓄电池厂的铅污染土壤作为研究对象,采用PA和磷酸氢二钠(DSP)分别作为有机磷和无机磷材料的代表,对比研究其钝化修复铅污染土壤的浸出毒性及相应的化学形态变化,从而为进一步实现铅污染土壤固化/稳定化修复实践奠定理论基础。
1   材料与方法
1.1   试验材料
本次对比研究的供试土壤来自于西南地区某铅酸蓄电池厂原址场地,其基本理化性质见表1。
表1   供试土壤的基本理化性质
土壤类型pH有机质含量/(g.kg-1Pb含量/(mg.kg-1)
砂土7.89212197.5
1.2   试验设计
供试土壤预处理:将土壤去除石砾、石块和根系等杂质后,自然风干,球磨机研磨后过60目筛,过筛后的土壤保存于聚丙烯袋中储存、备用。
试验设计:本试验全部处理均采用实验室室内培养,分别添加不同比例的含磷材料(DSP和PA),每个处理重复三次,共设31个处理(包括空白处理样)。每个处理均称取200 g试样土壤,加入一定比例(空白、1%、3%、5%、7%和9%,均为质量百分数)的磷材料(表2),在玻璃杯中充分搅拌均匀,调节土壤含水量为20%±5%,养护3 d,之后进行处理、测定土壤Pb浸出浓度及不同化学形态。
表2   不同磷材料的添加比例
试验批号DSP试验批号PA
对照CK0%对照CK0%
D11%P11%
D23%P23%
D35%P35%
D47%P47%
D59%P59%
1.3   试验方法
试样土壤pH:称取土样10 g于50 mL高型烧杯中,加入25 mL无二氧化碳的去离子水,玻璃杯搅拌1—2 min,避免接触空气静止30 min后,用pH计测定其pH值。
浸出毒性分析:供试土壤Pb浸出浓度分析方法按照原国家环境保护总局(2007)发布的《固体废物浸出毒性浸出方法——醋酸缓冲溶液法》(HJ/T 300—2007)测定。
土壤铅的化学形态采用BCR(Bureau Community of Reference)分析方法测定(Nowak-Winiarska et al,2012;Rosado et al,2016)。土壤中铅的化学形态分为酸可提取态(AF)、可还原态(RF)、可氧化态(OF)、残渣态(ResF)四种形态,提取方法如下:(1)AF,称取1 g试样土壤加入40 mL 0.11 mol·L-1 HAC,室温振荡16 h,离心分离后取上清液上机测试;(2)RF,向上步残余物中加入40 mL 0.5 mol·L-1 NH2OH.HCl,室温振荡16 h,离心分离后取上清液上机测试;(3)OF:向上步残余物中加入10 mL 30% H2O2室温放置1 h,水浴85℃加热至近干后再加入10 mL H2O2重复蒸至近干,冷却后加入50 mL 1mol·L-1 NH4OAC室温振荡16 h,离心分离后取上清液上机测试;(4)ResF:向上步残余物中加入2 mL HF、10 mL HClO4消解至近干,再加入1 mL HClO4、10 mL HF再次消解至近干,最后再加入1 mL HClO4,消解至出现白色烟雾,得到的物质溶解在12 N的HCl中,定容后上机测试。
以上各处理的Pb含量均使用原子吸收光谱仪AA800测定,测试相对误差不超过5%。
1.4   数据处理与分析
采用Microsoft Office Excel 2013及SPSS Statistics进行数据分析,CorelDRAW12制图。
2   结果与分析
2.1   不同磷材料对土壤pH值的影响
供试土壤添加不同的改良剂后,土壤pH的变化趋势明显不同(图1)。供试土壤添加DSP后,土壤pH略微降低,但变化幅度不大,在7.4—7.7波动;而添加PA后,随着添加比例的增加,土壤pH则明显降低,当添加量为9%时,土壤pH变化幅度最大,pH值仅为5.47。由此可见,PA对土壤pH的影响幅度明显大于DSP(图1),这应该与两者各自的理化性质有关,DSP属于一种缓冲剂,土壤施加后pH值能稳定在一定的范围内;而PA本身则是一种酸性物质,因添加比例加大导致土壤pH降低,当添加比例大于3%后,pH值显著降低,但正好位于含磷材料发挥固化作用的最佳范围之内(宋波,2015)。


图1   不同磷材料对试验土壤pH值的影响
Fig.1 Effects of different phosphorus materials on tested soil pH value
2.2   不同磷材料对土壤铅浸出毒性的影响
通过两种磷材料的钝化处理,供试土壤的Pb浸出浓度变化趋势基本一致,两者均能有效地降低试验土壤的Pb浸出浓度(图2)。与原土相比,DSP处理后,土壤Pb浸出浓度最大降幅可达98.4%,从9.55 mg·L-1降至0.15 mg·L-1;同样的,PA处理后,土壤Pb浸出浓度降低至0.16 mg·L-1


图2   不同磷材料对污染土壤Pb浸出毒性的影响
Fig.2 Soil leaching toxicity of different phosphorus materials on tested soil
当添加比例为7%时,DSP和PA改良剂处理后的土壤Pb浸出浓度分别为0.16 mg·L-1和0.22 mg·L-1,Pb浸出浓度的降幅分别为98.3%和97.7%,均满足《生活垃圾填埋场污染控制标准》中的标准限值(0.25 mg·L-1),虽然DSP的处理效果略微优于PA,但供试土壤铅的钝化效果差异并不明显。而当添加比例为9%时,供试污染土壤的Pb浸出浓度分别为0.15 mg·L-1和0.17 mg·L-1,Pb浸出浓度的降幅分别为98.4%和98.3%,同样也满足生活垃圾填埋场入场标准限值,并且土壤Pb浸出浓度降幅差异也不明显。
可见,本次试验所采用的不同磷材料均能有效降低供试污染土壤的Pb浸出毒性,这与其他含磷材料对土壤中Pb钝化研究结果相类似(Park et al,2011;宋波,2015)。因此,通过不同含磷材料对比研究发现,有机磷PA对供试土壤的Pb元素同样表现出良好的钝化效果,且当钝化效果最佳时土壤pH明显降低(图1),但正好位于含磷材料固化铅元素的最佳使用范围4—6(宋波,2015)。
2.3   不同磷材料对土壤铅形态的影响
已有的研究表明,土壤重金属总量并不足以反映其对环境的潜在危害程度,而易释放态的重金属元素毒性则更加强烈(韩春梅,2005)。因此,为了更好地反映不同磷材料对供试土壤铅的钝化效果,采用BCR法分析了添加不同比例改良剂后的铅化学形态变化特征。
原供试土壤中铅元素的四种化学形态比例依次为:可还原态(41.0%)>酸可提取态(38.9%)>可氧化态(10.9%)>残渣态(9.2%),铅元素主要以酸可提取态铅(AF-Pb)和可还原态铅(RF-Pb)存在,可氧化态铅(OF-Pb)和残渣态铅(ResF-Pb)总共仅占总量的20.1%。由此可见,供试土壤中Pb元素是比较活泼的。
施加DSP后,供试土壤中铅形态发生明显的变化(图3)。与原土相比,随着添加比例的增加,土壤中AF-Pb明显减少,当添加比例为7%时,最大降幅达到了96.4%;RF-Pb则表现出先增加,后减少的趋势,最大降幅为52.2%。当添加比例为7%时,供试土壤ResF所占比例达到了最大值(52.3%),土壤铅赋存形态依次为:残渣态(52.3%)>可氧化态(26.7%)>可还原态(19.6%)>酸可提取态(1.4%)。此时,土壤中OF-Pb和ResF-Pb占到了总量的79%。因此,DSP与其他无机磷材料一样,具备较好的固铅效果。


图3   磷酸氢二钠对土壤铅形态的影响
Fig.3 Effect of DSP on the speciation of Pb in tested soil
当供试土壤施加PA后,随添加比例的增加,土壤AF-Pb也显著降低,OF-Pb逐渐减少,ResF-Pb则明显增加(图4)。当添加比为7%时,与原土相比,AF-Pb减少了96.1%;RF-Pb减少了31.1%;当PA添加比例为9%时,土壤ResF-Pb所占比例最大,此时土壤铅形态赋存形式依次为:残渣态(67.1%)>可还原态(26.9%)>可氧化态(4.4%)>酸可提取态(1.5%),土壤中稳定态的OF-Pb和ResF-Pb占到了总量的94%。由此可见,PA对铅污染土壤中活泼态的铅也表现出良好的固定作用。


图4   植酸施加对土壤铅形态的影响
Fig.4 Effect of PA on the speciation of Pb in tested soil
虽然含磷材料投加量增多能有效地促进土壤中铅由活泼态向稳定态转化,但其发挥最佳固铅效果时,土壤pH变化则不尽相同。当PA发挥最佳固铅效果时,土壤pH最低(仅为5.47);已有的研究也表明,低pH条件同时促进了土壤铅和磷释放,从而形成难溶物质(宋波,2015)。而DSP则不同,投加量增大后pH变化并不明显。由此可见,pH变化对不同含磷材料的固铅机理影响可能不尽相同,这有待进一步的研究说明。
生物活性系数(MF)是指土壤中有效态金属元素(AF)含量与总量之间的比值(Kabala et al,2001)。MF值越大,对环境的潜在危害就越大;反之,危害就越小。本研究中供试土壤经过两种材料的改良处理后,大多数的AF-Pb转化为ResF-Pb,从而有效地降低了土壤的MF值(图5)。线性分析也发现,不同磷材料处理后,土壤MF值与稳定化剂的添加比例呈正相关,且PA处理的相关系数略微优于DSP(图5)。


图5   MF值与添加比例间的线性关系
Fig.5 Linear relationship between MF and different ratio of DSP and PA
综上所述,供试土壤经过钝化处理后,DSP和PA均能促进污染土壤中AF-Pb和RF-Pb向稳定态的OF-Pb和ResF-Pb转变,从而达到固化铅离子的目的。通过比较两种改良剂在不同投加比例时的土壤ResF-Pb所占比例可知(图3和图4),PA处理后的残渣态占比大于DSP处理后的土壤,故供试污染土壤中铅元素的固定能力优于DSP,由此推测,PA应该是由于独特的六个磷酸基团结构(严玉鹏,2012),而具备良好的固铅能力,这也需要进一步的研究证明。
2.4   土壤铅形态与浸出毒性的相关性分析
AF-Pb是与土壤颗粒表面弱吸附的铅离子,具有较强的溶解性和迁移性,可直接被生物利用(韩春梅,2005;廖天鹏,2014)。采用SPSS Statistics对改良剂处理后的土壤铅形态与浸出毒性进行相关性分析,如表3和表4所示。结果表明:供试土壤的Pb浸出浓度与土壤AF-Pb呈显著正相关。经过PA处理后,污染土壤Pb浸出浓度与AF-Pb的相关性达到了0.997**,而DSP处理后,相关性则为0.993**,前者略微优于后者。由此可知,供试铅污染土壤经过含磷材料的钝化处理,酸可提取部分(即易溶态)的铅离子已大大减少,从而达到了控制铅浸出毒性的目的,最终降低了铅污染土壤铅元素再次释放的风险水平。
表3   DSP处理后的土壤铅形态与浸出毒性相关性分析
AFRFOFResF浸出液
AFPearson相关性10.451-0.732-0.640.993**
显著性(双侧)0.3690.0980.1710
RFPearson相关性0.4511-0.297-0.935**0.36
显著性(双侧)0.3690.5680.0060.483
OFPearson相关性-0.732-0.29710.561-0.772
显著性(双侧)0.0980.5680.2470.072
ResFPearson相关性-0.64-0.935**0.5611-0.578
显著性(双侧)0.1710.0060.2470.229
浸出液Pearson相关性0.993**0.36-0.772-0.5781
显著性(双侧)00.4830.0720.229
注:**.在0.01水平(双侧)上显著相关。
表4   PA处理后的土壤铅形态与浸出毒性相关性分析
AFRFOFResF浸出液
AFPearson相关性10.6990.936**-0.939**0.997**
显著性(双侧)0.1220.0060.0050
RFPearson相关性0.69910.819*-0.861*0.646
显著性(双侧)0.1220.0460.0270.166
OFPearson相关性0.936**0.819*1-0.943**0.918**
显著性(双侧)0.0060.0460.0050.01
ResFPearson相关性-0.936**-0.861*-0.943*1-0.916**
显著性(双侧)0.0050.0270.0050.01
浸出液Pearson相关性0.997**0.6460.918**-0.918**1
显著性(双侧)00.1660.010.01
注:**.在0.01水平(双侧)上显著相关;*. 在0.05水平(双侧)上显著相关。
3   结论
(1)研究发现,供试土壤中投加不同比例的DSP后pH变化不明显,而PA添加比例增加后土壤pH明显降低。虽然DSP和PA对土壤pH变化影响程度不同,但两者均能有效地降低土壤的铅浸出浓度,这可能说明pH降低对含磷材料PA固铅效果的影响不大。
(2)形态分析结果表明,不同含磷材料添加比例的增加能有效地促进供试土壤铅元素从活泼态(AF-Pb和RF-Pb)向稳定态(OF-Pb和ResF-Pb)转化,且PA对土壤铅的固定能力略强于DSP。相关性分析也表明,DSP和PA处理供试铅污染土壤后,土壤铅浸出浓度与酸可提取态的铅之间具有极显著的正相关关系。
(3)通过DSP和PA修复污染土壤的铅浸出毒性及其化学形态对比研究发现,植酸虽然是一种有机酸,但同样也具有良好的固铅能力,且能保持供试铅污染土壤pH处于含磷材料发挥固铅效果的最佳范围。
致谢:感谢审稿专家提出的建设性意见和建议!
曹俊, 向斌, 高焕方, 等. 2016. 磷酸盐稳定化处理铅污染土壤及铅的形态分析[J]. 环境工程学报, 10(10): 6015–6020. [Cao J, Xiang B, Gao H F, et al. 2016. Stablization of lead contaminated soil with phosphate and the distribution of Pb speciation [J]. Chinese Journal of Environmental Engineering, 10(10): 6015–6020.]
国家环境保护总局. 2007. HJ/T 300—2007 固体废物浸出毒性浸出方法——醋酸缓冲溶液法[S].北京: 中国环境科学出版社. [State Environmental Protection Administration of China. 2007. HJ/T 300—2007 Solid waste-Extraction method for leaching toxicity— acetic acid buffer solution method [S]. Beijing: China Environmental Science Press.]
韩春梅, 王林山, 巩宗强, 等. 2005. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 24(12): 1499–1502. [Han C M, Wang L S, Gong Z Q, et al. 2005. Chemical forms of soil heavy metals and their environmental significance [J]. Chinese Journal of Ecology, 24(12): 1499–1502.]
赖胜强, 林亲铁, 项江欣, 等. 2016. 氧化镁基固化剂对铅离子的吸附作用及其影响因素[J]. 环境工程学报, 10(7): 3859–3865. [Lai S Q, Lin Q T, Xiang J X, et al. 2016. Adsorption of Pb2+ on a magnesia-based curing agent and its influencing factors [J]. Chinese Journal of Environmental Engineering, 10(7): 3859–3865.]
廖天鹏, 祝星, 祁先进, 等. 2014. 铜污泥中重金属形态分布及浸出毒性分析[J]. 化工进展, 33(3): 762–768. [Liao T P, Zhu X, Qi X J, et al. 2014. Chemical speciation of heavy metals and leaching toxicity analysis of sludge in copper metallurgy plant [J]. Chemical Industry and Engineering Progress, 33(3): 762–768.]
刘庚, 牛俊杰, 张朝, 等. 2014. 某铅酸蓄电池污染场地表层土壤重金属Pb空间分布预测研究[J]. 环境科学, 35(12): 4712–4719. [Liu G, Niu J J, Zhang C, et al. 2014. Spatial distribution prediction of surface soil Pb in a battery contaminated site [J]. Environmental Science, 35(12): 4712–4719.]
罗惠莉, 黄圣生, 罗琳, 等. 2011. 赤泥基颗粒对铅污染土壤的原位稳定化修复[J]. 中南大学学报(自然科学版), 42(6): 1819–1824. [Luo H L, Huang S S, Luo L, et al. 2011. In-situ stabilization remediation of lead contaminated soil by application of red mud based particles [J]. Journal of Central South University(Science and Technology), 42(6): 1819–1824.]
吕高明, 陈炳睿, 徐超, 等. 2011. 两种改良剂对矿区重金属污染土壤中Pb、Cd、Zn的固定效果[J]. 中南林业科技大学学报, 31(7): 140–144. [Lu G M, Chen B R, Xu C, et al. 2011. Fixing effects of Pb, Cd, Zn in heavy metals polluted soil of mining area by two modifying agents [J]. Journal of Central South University of Forestry & Technology, 31(7): 140–144.]
宋波, 曾炜铨, 陆素芬, 等. 2015. 含磷材料在铅污染土壤修复中的应用[J]. 环境工程学报, 9(12): 5649–5658. [Song B, Zeng W Q, Lu S F, et al. 2015. Application of phosphorus materials in remediation of lead-contaminated soil [J]. Chinese Journal of Environmental Engineering, 9(12): 5649–5658.]
孙荣基, 陈志莉, 盛利伟. 2017. 铅蓄电池厂遗留场地污染分析与风险评价[J]. 西南大学学报(自然科学版), 39(8): 146–152. [Sun R J, Chen Z L, Sheng L W. 2017. Pollution analysis and risk assessment of the remaining site of a relocated lead acid battery factory [J]. Journal of Southwest University(Natural Science Edition), 39(8): 146–152.]
孙约兵, 王朋超, 徐应明, 等. 2014. 海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J]. 环境科学, 35(12): 4720–4726. [Sun Y B, Wang P C, Xu Y M, et al. 2014. Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality [J]. Environmental Science, 35(12): 4720–4726.]
王林, 徐应明, 孙国红, 等. 2012. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J]. 生态环境学报, 21(2): 314–320. [Wang L, Xu Y M, Sun G H, et al. 2012. Effect and mechanism of immobilization of paddy soil contaminated by cadmium and lead using sepiolite and phosphate [J]. Ecology and Environmental Sciences, 21(2): 314–320.]
严玉鹏, 万彪, 刘凡, 等. 2012. 环境中植酸的分布、形态及界面反应行为[J]. 应用与环境生物学报, 18(3): 494–501. [Yan Y P, Wan B, Liu F, et al. 2012. Distribution, species and interfacial reactions of phytic acid in environment [J]. Chinese Journal of Applied and Environmental Biology, 18(3): 494–501.]
杨孟, 李凤英, 刁一伟, 等. 2014. 城市区域土壤铅含量空间变异的多尺度研究进展[J]. 环境科学, 35(4): 1586–1596. [Yang M, Li F Y, Diao Y W, et al. 2014. A review of multi-scale studies on spatial variation of the lead(Pb) concentration in urban soils[J]. Environmental Science, 35(4): 1586–1596.]
郑立保, 陈卫平, 焦文涛, 等. 2013. 某铅蓄电池厂土壤中铅的含量分布特征及生态风险[J]. 环境科学, 34(9): 3669-3674. [Zheng L B, Chen W P, Jiao W T, et al. 2013. Distribution characteristics and ecological risk of Pb in soils at a lead battery plant [J]. Environmental Science, 34(9): 3669-3674.]
中华人民共和国环境保护部, 中华人民共和国国土资源部. 2014-04-17(2018-12-17). 全国土壤污染状况调查公报[EB/OL]. http://www.gov.cn/xinwen/2014-04/17/content_2661765.htm. [Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China. 2014-04-17(2018-12-17). Report on the national general survey of soil contamination [EB/OL]. http://www.gov.cn/xinwen/2014-04/17/content_2661765.htm.]
Cao X D, Wahbi A, Ma L N, et al. 2009. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid [J]. Journal of Hazardous Materials, 164(2/3): 555–564.
Gray C W, Dunham S J, Dennis P G, et al. 2006. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud [J]. Environmental Pollution, 142(3): 530–539.
Hashimoto Y, Takaoka M, Oshita K, et al. 2009. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy [J]. Chemosphere, 76(5): 616–622.
Kabala C, Singh B R. 2001. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter [J]. Journal of Environmental Quality,30(2): 485-492.
Nolan K B, Duffin P A, McWeeny D J. 2010. Effects of phytate on mineral bioavailability. in vitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate [J]. Journal of the Science of Food and Agriculture, 40(1): 79-85.
Nowak-Winiarska K, Wrobel S, Sienkiewicz-Cholewa U. 2012. Application of sequential analysis with the BCR method in the estimation of effects of chemical remediation of soil polluted with copper [J]. Chemical Speciation & Bioavailability, 24(1): 53–59.
Park J H, Bolan N, Megharaj M, et al. 2011. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils [J]. Science of the Total Environment, 409(4): 853–860.
Rosado D, Usero J, Morillo J. 2016. Ability of 3 extraction methods (BCR, Tessier and protease K) to estimate bioavailable metals in sediments from Huelva estuary (Southwestern Spain) [J]. Marine Pollution Bulletin, 102(1): 65–71.
Seaman J C, Hutchison J M, Jackson B P, et al. 2003. In situ treatment of metals in contaminated soils with phytate [J]. Journal of Environmental Quality, 32(1): 153-161.
Sima J K, Cao X D, Zhao L, et al. 2015. Toxicity characteristic leaching procedure over- or under-estimates leachability of lead in phosphate-amended contaminated soils [J]. Chemosphere, 138: 744–750.
Zhang Z, Guo G L, Teng Y G, et al. 2015. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site [J]. Journal of Hazardous Materials, 288: 140–146.
稿件与作者信息
朱小龙
ZHU Xiaolong
zhuxiaolong9@163.com
卢再亮
LU Zailiang
秦勇军
QIN Yongjun
彭鹏
PENG Peng
基金项目 :重庆市科技计划项目(cstc2018jszx-cyzdX0019)
Science and Technology Project of Chongqing, China(cstc2018jszx-cyzdX0019)
出版历史
出版时间: 2019年1月12日 (版本4
参考文献列表中查看
地球环境学报
Journal of Earth Environment