研究论文 正式出版 版本 1 Vol 10 (4) : 390-396 2019
下载
沙层水分小尺度地域分异特征——以沙坡头沙区为例
The features of small-scale regional differentiation of sand layer moisture— a case study of the Shapotou area
, , ,
: 2018 - 10 - 08
: 2019 - 01 - 30
: 2019 - 02 - 15
94 1 0
摘要&关键词
摘要:水分是沙漠地区生态环境的限制因子,研究沙漠沙层水分分布规律对在沙区种植人工植物进行固沙有显著指导意义。通过对沙坡头沙区两个典型流动沙丘不同坡向、不同部位以及两个洼地进行采样,研究该区沙层水分平衡与地域分异规律,结果表明:(1)流动大沙丘顶部沙层水分含量一般在1.00%以下,中部水分含量一般在1.00%—2.00%,底部水分含量一般在2.00%—3.00%,均以薄膜水形式存在。洼地沙层2.0—3.0 m左右深度有饱和重力水甚至地下水出现。(2)流动大沙丘的迎风坡沙层水分高于背风坡,沙丘水分含量均是底部最高,中部次之,顶部最低。(3)沙坡头区沙层水分属于快速入渗型水分正平衡,洼地或平坦地段是大气降水向下入渗的主要渠道。
关键词:沙坡头;水分来源;水分平衡;水分分异
Abstract & Keywords
Abstract: Background, aim, and scope Water shortage is the limiting factor of the ecological environment in desert areas. Studying the moisture content, forms and distribution characteristics of sand layers has guiding significance for planting artificial plants to fix sand in desert area. Materials and methods In this paper, two typical mega-dunes and two depressions were sampled to study the moisture content, forms and distribution characteristics of sand layers in Shapotou area. ResultsThe variation of moisture content in sand layers of mega-dunes can be divided into four levels. The first level is characterized by moisture varied actively, which occurs from the surface to a depth of approximately 0.4 m. The second level occurs from a depth of approximately 0.5 m to 1.0 m. The third level occurs from a depth of approximately 1.0 m to 2.0 m. The fourth level occurs at a depth below 2.0 m. On the other hand, the variation of moisture content in the sand layers of depressions can be divided into three levels. The moisture content in the first level is below 5.00%, between 5.00% and 25.00% in the second level, and above 25.00% in the third level. Discussion In general, any moisture content less than 5.00% should be called film water, higher than 5.00% should be called gravitational water. The moisture content in both of the mega-dunes were less than 5.00%, indicating that the moisture present is film water. The peak of moisture content in most boreholes appears in the middle or upper middle sections, but also some reached to a depth (below 0.5 m) that not affected by evaporation. This finding indicates that atmospheric precipitation is one of the sources supplying groundwater in Shapotou area. Gravitational water appears in the bottom of the depressions, and connects with the capillary water and groundwater. Conclusions The results show that: (1) the moisture content at the top of the mega-dunes is below 1.00%, in the middle of it between 1.00% and 2.00%, at the bottom of it between 2.00% and 3.00%, which indicates they are all film water. (2) The moisture content on the windward slopes of the mega-dunes are higher than the leeward slopes. The highest moisture content exsits at the bottom of mega-dunes, fowlled by the middle, and lowest at the top. Saturated gravitational water or groundwater often occurs at a depth of approximately 2.0 m to 3.0 m in the sand layers. (3) There exists positive moisture balance in the sand layers due to the rapid infiltration in Shapotou area, and the depressions or flat sections are the main channels for atmospheric precipitation infiltrate downward. Recommendations and perspectives It is possible to adopt trees and grass, or utilize greenhouses to control desertification in depressions or flat lots where more groundwater exists, according to the regional differentiation law of moisture content. On the other hand, engineering measures such as clay or gravel barriers and “grass grids” should be adopted to control desertification in mega-dunes comprehensively.
Keywords: Shapotou; moisture differentiation; moisture sources; moisture balance
水分是干旱区重要的环境因子,尤其在沙漠地区,水分是植物生长发育的最大限制因子,直接影响沙漠区退化生态系统的恢复与重建,是控制沙漠进退的关键因子。近十几年来,国内学者在塔克拉玛干沙漠(安桂香等,2011)、古尔班通古特沙漠(张世军等,2005;朱玉伟等,2008)、巴丹吉林沙漠(崔徐甲等,2017;马金珠等,2011;马宁等,2014;马延东等,2016;王乃昂等,2013;赵景波等,2017a,2017b)、腾格里沙漠(赵景波等,2010,2011,2012;杨晓玉等,2016)开展过沙层水分研究。现已认识到,沙丘迎风坡基质流动、背风坡沙埋、丘间地潜水埋深等因素控制着沙层水分分布规律(王鸣远等,2002)。董学军等(1999)在毛乌素沙地的研究表明,流动沙丘迎风坡沙层水分含量明显高于背风坡。叶冬梅等(2005)在乌兰布和沙漠的研究也指出,流动沙丘迎风坡沙层水分含量高于背风坡。但也有学者认为不同坡向沙层水分高低也存在季节性变化,吕贻忠等(2006)在毛乌素沙地的研究表明,春季和夏季流动沙丘迎风坡水分含量高于背风坡。而王志等(2007)通过研究毛乌素沙地南缘沙丘水分特征发现,春秋两季沙丘水分背风坡大于迎风坡,夏季迎风坡水分含量高于背风坡。这般差异的研究结果不利于清楚认识沙漠地区沙层水分分异规律,有必要继续开展系统研究。
沙坡头沙区位于腾格里沙漠东南缘,处在沙漠进退的关键地带,该区的水分条件对防风固沙植被生长至关重要。迄今为止,国内学者在沙坡头区沙层水分方面开展了较多研究(李新荣等,2001;石莎等,2004;赵景波等,2010,2011,2012;杨晓玉等,2016)。这些成果有利于认识该区沙层水分条件,但尚未见到在该区系统开展沙层水分在大沙丘不同坡向和部位上的分布规律的研究报道。选择沙坡头沙区作为研究对象,通过在该区流动大沙丘迎风坡和背风坡不同部位采样,分析和讨论该区流动沙丘迎风坡和背风坡水分分布特点,不仅对在流沙上种植人工植物进行防风固沙有理论指导意义,也对理解其他沙漠区沙层水分分布有重要参考意义。
1   材料与方法
研究区位于沙坡头区迎水桥镇中国科学院风沙观测场,该区属于典型的大陆性沙漠气候,年降水量186.6 mm,且主要集中在6—9月,占全年降水量的60%。年平均气温8.8℃,全年无霜期平均167 d,全年日照时数2870 h。年蒸发量为1829.6 mm,约为降水量的10倍。
在研究区内选择2个典型流动大沙丘(编号分别为A和B)和2个洼地(编号分别为A和B)。大沙丘A位于37°33′48.5″N,105°02′10.6″E,沙丘丘顶海拔高度为1290 m,沙丘高约15 m左右,在中国科学院风沙观测场东偏北约10°的100 m处,位于迎闫公路东侧50 m处。无人为扰动也无植物生长,周围有相对较小的流动沙丘。大沙丘B位于37°33′59.1″N,105°02′11.5″E,位于大沙丘A的东偏北约10°的300 m处,沙丘顶海拔高度约为1300 m,无植物生长也无人为扰动,沙丘形态较好。利用轻型人力钻采集沙层样品,流动大沙丘采样点分别选择在其迎风坡和背风坡的上部、中部和下部(采样点分布见图1)。每个采样点选择2个平行剖面,剖面间距为1.5 m,剖面深度均为4.0 m(洼地除外),取样间距为10 cm。采集样品时,用高精度微型电子天平无风条件下进行现场称重,贴上标签并记录其湿重,之后立即再套一个样品袋防止样品外漏,带回实验室采用烘干法测量样品水分含量。


图1   研究区采样点分布图
Fig.1 Location of collecting sample sites in study area
第1采样点为大沙丘A;第2采样点为大沙丘B;第3采样点为洼地A;第4采样点为洼地B。 The first and second sample sites represent mega-dune A and B, respectively. The third and fourth sample sites represent depression A and B, respectively.
2   结果与讨论
2.1   大沙丘不同坡向和部位水分差异
流动大沙丘沙层水分含量测定结果见表1,根据含水率变化将大沙丘沙层水分垂向变化大致可分为4个层次:第1层深度自表层至0.4 m左右,该层受气象因素影响较大,干湿变化剧烈,水分变化活跃。第2层深度自0.5 m至1.0 m左右,该层受气象因素影响较小,水分来自上部下渗水。第3层深度自1.1 m至2.0 m左右,第4层深度自2.1 m左右至4.0 m。由表1和图2可看出:第一,无论是沙丘的迎风坡还是背风坡的上部、中部和下部,采样点各层次的沙层含水率的变化范围和均值均在5.00%以下,表明大沙丘沙层水分以薄膜水形式存在。第二,无论是迎风坡还是背风坡,沙层含水率变化范围和均值总体呈现出下部最高、中部次之、上部最低的分布特点。第三,无论是沙丘上部、中部和下部,沙层含水率均是迎风坡高于背风坡。
蒋定生和黄国俊(1984)通过研究地面坡度对降水入渗的影响结果表明:坡度越大,承雨强度越低,水分入渗量减少。背风坡坡度较大,在相同降雨条件下,背风坡承雨强度较低、水分入渗量较少,导致水分含量较迎风坡低。再者,迎风坡沙层水分受降水影响深度较大,背风坡因持续堆沙形成特有的水分特征,这与其堆沙剖面水分含量普遍较小有关(叶冬梅等,2005)。
董学军等(1999)对毛乌素沙地柏的水分生态研究表明,丘间地水分含量明显高于沙丘顶部。赵景波等(2011)在腾格里沙漠的研究结果表明,流动大沙丘沙层水分含量从高到低依次为丘间地或洼地、沙丘底部、沙丘中部和沙丘顶部。地势越高,不利于雨水蓄积和水分下渗,并且接受阳光照射时间较长、蒸发强度较大导致水分含量较低。沙丘底部地势平缓,有利于水分蓄积和下渗,而且阳光照射时间较短,蒸发强度较小。
表1   沙坡头沙层水分含量(%)
样点 Sites第1层
First layer
第2层
Second layer
第3层
Third layer
第4层
Fouth layer
范围
Range
均值
Mean
范围
Range
均值
Mean
范围
Range
均值
Mean
范围
Range
均值
Mean



A
Md
A



W
S

T
a孔0.84~1.251.060.80~1.140.940.75~1.341.050.61~1.140.81
b孔0.86~1.261.060.78~1.130.930.76~1.331.060.64~1.120.79

M
a孔1.69~2.011.861.65~2.081.861.07~1.491.241.11~1.741.47
b孔1.70~2.021.871.23~2.081.741.21~1.271.241.13~1.711.45

B
a孔2.35~3.553.121.90~3.542.552.46~3.883.071.34~2.962.24
b孔2.54~3.323.002.40~3.322.682.20~3.262.601.88~3.632.77



L
S

T
a孔0.58~0.980.790.28~0.430.330.56~1.951.320.20~1.870.79
b孔0.47~0.850.640.33~0.490.450.12~1.760.860.29~2.211.16

M
a孔0.68~1.891.181.22~1.981.731.49~2.471.830.85~1.831.26
b孔0.68~1.901.191.35~1.851.661.00~1.981.640.84~1.351.15

B
a孔1.92~2.222.072.63~3.573.133.04~3.803.341.81~3.762.74
b孔1.79~2.882.271.92~3.322.762.50~3.803.081.42~4.092.42



B
Md
B



W
S

T
a孔1.01~1.271.141.13~2.011.610.88~1.861.400.93~1.981.43
b孔1.01~1.281.121.42~2.001.660.90~1.871.360.91~1.961.45

M
a孔2.58~3.132.791.93~3.022.521.47~2.221.680.95~1.281.14
b孔1.67~3.082.431.74~2.181.871.35~1.871.601.38~1.661.48

B
a孔1.46~2.401.931.63~2.481.991.28~2.311.691.33~2.352.02
b孔1.84~2.182.021.32~2.341.711.46~1.911.651.47~2.321.86



L
S

T
a孔0.79~1.681.360.54~1.300.890.48~1.180.860.45~1.230.83
b孔1.36~1.511.440.47~1.551.120.36~1.230.720.39~1.270.67

M
a孔1.56~2.201.922.09~3.362.691.62~1.701.650.36~1.491.03
b孔1.77~2.402.131.95~2.972.331.00~1.201.110.64~2.071.30

B
a孔1.34~1.991.701.39~3.292.231.64~2.822.201.32~2.602.04
b孔1.38~1.981.701.38~3.312.151.90~2.842.261.28~2.612.04
洼地A
Dpr A
a孔2.08~3.772.876.32~24.8216.8326.00~28.7627.47
b孔2.27~3.803.175.93~23.1314.7227.01~28.7828.02
洼地B
Dpr B
a孔0.65~3.341.865.14~21.0613.4124.47~28.1626.68
b孔0.62~4.742.1613.14~20.7118.1426.20~27.0626.54
表中字母分别代表项目英文简写,Md代表Mega-dune,Dpr代表Depression,WS代表Windward Slop,LS代表Leeward Slop,T代表Top,M代表Middle,B代表Bottom。The letters in the table represent the English shorthand for the project, for example, Md (Mega-dune), Dpr (Depression), WS (Windward Slop), LS (Leeward Slop), T (Top), M (Middle), B (Bottom)


图2   大沙丘不同坡向和部位沙层水分含量
Fig.2 Moisture content of different slope and part of mega-dunes
2.2   洼地沙层水分与地下水
洼地沙层含水率测定结果见表1。赵景波等(2010,2012)在腾格里沙漠的研究中将沙丘间洼地水分含量在5.00%—25.00%划分为毛管水,高于25.00%划分为饱和重力水。基于此,按照水分存在形式将洼地沙层水分划分为三个层次:第1层水分含量在5.00%以下,为薄膜水层。第2层水分含量在5.00%—25.00%,为毛管水层。第3层水分含量在25%以上,为饱和重力水层。主要差异在于(1)洼地A毛管水层出现在1.6 m或1.7 m深度,而洼地B毛管水层出现在3.1 m深度;(2)洼地A饱和重力水层出现在2.1 m深度,洼地B饱和重力水层出现在3.5 m。需要提及的是,在洼地的采样深度以最后一钻水分含量太高而无法提取样品为止。
根据谭增任和周兴智(1985)以及冯起和程国栋(1999)的研究结果,腾格里沙漠地区地下潜水位埋深约1.2—4.0 m,与本文在洼地实测毛管水层和饱和重力水层出现深度吻合。洼地A和B毛管水层和饱和重力水层出现深度不同,主要是因为洼地A地势较洼地B低,距离地下水位较近所致。洼地既利于水分入渗又利于径流汇集,造成含水量升高,甚至出现地下水。
2.3   沙层水分平衡
由于降水稀少,蒸发强度大,人们通常认为沙漠地区是水分负平衡的地区。然而以下两条证据可说明沙坡头区沙层水分存在正平衡:(1)在两个大沙丘的含水量测定结果显示,多数钻孔含水量峰值段出现在中部或中上部,且部分钻孔含水量峰值段延续到了不受蒸发作用影响深度0.5 m之下(图3阴影部分所示),指示大气降水至少已经成为该沙漠地下水的补给来源之一。(2)根据前人在沙坡头地区的研究结果,当降水量大于40 mm时,水分可入渗至3.0 m深度的土层;当降水量约30 mm时,可入渗至2.0 m深度的土层;当降水量大于10 mm时,水分只能浸透干沙层(冯起和程国栋,1999)。据观测,在1993年8月中旬发生的一次22.2 mm的降水过程中,水分入渗深度到达1.0 m左右(刘元波等,1995)。另外,沙层受蒸发的深度一般不超过0.5 m深度,倘若0.5 m深度以下各层水分含量高于重力水含量5.00%时,就会在重力作用下向更深层下渗,因此该区具备水分正平衡的条件,属于快速入渗型水分正平衡,促进大气降水向地下水的转化。


图3   大沙丘A和B钻孔剖面含水量变化
a和b分别为大沙丘A的迎风坡和背风坡;c和d分别为大沙丘B的迎风坡和背风坡;灰色阴影部分指示沙层水分峰值,各条曲线均是由两个平行钻孔a和b求平均值所得。 a and b represent windward and leeward slope of the mega-dune A, respectively. c and d represent windward and leeward slope of the mega-dune B, respectively. Gray shaded area indicates peak moisture in the sand layer, each curve is averaged from two parallel bores a and b.
Fig. 3 Moisture content changes in drilling profile of mega-dune A and B
3   结论
通过对沙坡头区28个剖面的沙层水分含量的测定,对该区春季沙层水分进行了研究,得出以下主要结论:
(1)流动大沙丘各部位沙层水分含量在5.00%以下,均以薄膜水形式存在,只有在洼地才出现饱和重力水甚至地下水。(2)流动大沙丘沙层水分含量随着相对高度的增加而降低,且迎风坡高于背风坡。流动大沙丘各钻孔剖面水分含量峰值多出现在上部或中上部,具有大气降水补给地下水的特点。
(3)沙坡头区沙层水分具有正平衡特点,主要是因沙层的高渗透率和受蒸发作用影响深度小而能够出现水分正平衡,属于快速入渗和蒸发少型的水分正平衡,洼地或平坦地段是大气降水向下入渗的主要渠道。
致谢
安桂香, 曾凡江, 孙旭伟, 等. 2011. 塔克拉玛干沙漠南缘不同植被区土壤水分状况研究[J]. 水土保持通报, 31(1): 63–67, 164. [An G X, Zeng F J, Sun X W, et al. 2011. Soil water conditions under various vegetations in southern fringe of Takelamakan Desert [J]. Bulletin of Soil and Water Conservation, 31(1): 63–67, 164.]
崔徐甲, 孙虎, 董治宝, 等. 2017. 巴丹吉林沙漠高大沙山湿沙层水分特征[J]. 中国沙漠, 37(2): 214–221. [Cui X J, Sun H, Dong Z B, et al. 2017. Wet sand layer moisture of mega-dunes in the Badain Jaran sand sea [J]. Journal of Desert Research, 37(2): 214–221.]
董学军, 陈仲新, 阿拉腾宝, 等. 1999. 毛乌素沙地沙地柏(Sabina vulgaris)的水分生态初步研究[J]. 植物生态学报, 23(4): 311-319. [Dong X J, Chen Z X, Aalatengbao, et al. 1999. A preliminary study on the water regimes of Sabina vulgaris in Maowusu Sandland, China [J]. Acta Phytoecologica Sinica, 23(4): 311-319.]
冯起, 程国栋. 1999. 我国沙地水分分布状况及其意义[J]. 土壤学报, 36(2): 225-236. [Feng Q, Cheng G D. 1999. Moisture distribution and movement in sandy lands of China [J]. Acta Pedologica Sinica, 36(2): 225-236.]
蒋定生, 黄国俊. 1984. 地面坡度对降水入渗影响的模拟试验[J]. 水土保持通报, 4(4): 10-13. [Jiang D S, Huang G J. 1984. Simulation test of influence of ground slope on precipitation infiltration [J]. Bulletin of Soil and Water Conservation, 4(4): 10-13.]
李新荣, 马凤云, 龙立群, 等. 2001. 沙坡头地区固沙植被土壤水分动态研究[J]. 中国沙漠, 21(3): 218-222. [Li X R, Ma F Y, Long L Q, et al. 2001. Soil water dynamics under sand-fixing vegetation in Shapotou area [J]. Journal of Desert Research, 21(3): 218-222.]
刘元波, 陈荷生, 高前兆, 等. 1995. 沙地降雨入渗水分动态[J]. 中国沙漠, 15(2): 143-150. [Liu Y B, Chen H S, Gao Q Z, et al. 1995. Dynamic variations of soil moisture caused by rainwater infiltration in bare sandy land [J]. Journal of Desert Research, 15(2): 143-150.]
吕贻忠, 胡克林, 李保国. 2006. 毛乌素沙地不同沙丘土壤水分的时空变异[J]. 土壤学报, 43(1): 152-154. [Lü Y Z, Hu K L, Li B G. 2006. The spatio-temporal variability of soil water in sand dunes in Mowusu Desert [J]. Acta Pedologica Sinica, 43(1): 152-154.]
马金珠, 周向阳, 王云权, 等. 2011. 巴丹吉林沙漠南部高大沙丘包气带水分空间分布特征研究[J]. 中国沙漠, 31(6): 1365–1372. [Ma J Z, Zhou X Y, Wang Y Q, et al. 2011. Spatial distribution of soil moisture at unsaturated zone in megadunes, southeast of Badian Jaran Desert [J]. Journal of Desert Research, 31(6): 1365–1372.]
马宁, 王乃昂, 赵力强, 等. 2014. 巴丹吉林沙漠腹地降水事件后的沙山蒸发观测[J]. 科学通报, 59(7): 615-622. [Ma N, Wang N A, Zhao L Q, et al. 2014. Observation of mega-dune evaporation after various rain events in the hinterland of Badain Jaran Desert [J]. China Science Bulletin, 59(7): 615-622.]
马延东, 赵景波, 罗小庆, 等. 2016. 巴丹吉林沙漠沙山区径流与地下水补给条件[J]. 地理学报, 71(3): 433–448. [Ma Y D, Zhao J B, Luo X Q, et al. 2016. Runoff and groundwater recharge conditions in the megadune area of Badain Jaran Desert [J]. Acta Geographica Sinica, 71(3): 433–448.]
石莎, 马风云, 刘立超, 等. 2004. 沙坡头地区不同植被结构对沙地土壤水分的影响[J]. 中央民族大学学报(自然科学版), 13(2): 137–141, 145. [Shi S, Ma F Y, Liu L C, et al. 2004. The effect on different vegetation structure to soil water contents in Shapoto region [J]. Journal of the Central University for Nationalities (Natural Science Edition), 13(2): 137–141, 145.]
谭增任,周兴智. 1985. 腾格里沙漠地下水及西部富水带的开发问题[J]. 水文, (4): 16-22. [Tan Z R, Zhou X Z. 1985. Development of groundwater and water-rich zone in the western Tengger Desert [J]. Journal of China Hydrology, (4): 16-22.]
王鸣远, 关三和, 王义. 2002. 毛乌素沙地过渡地带土壤水分特征及其植物利用[J]. 干旱区资源与环境, 16(2): 37–44. [Wang M Y, Guan S H, Wang Y. 2002. Soil moisture regimen and application for plants in Maowusu transition zone from sand land to desert [J]. Journal of Arid Land Resources and Environment, 16(2): 37–44.]
王乃昂, 马宁, 陈红宝, 等. 2013. 巴丹吉林沙漠腹地降水特征的初步分析[J]. 水科学进展, 24(2): 153–160. [Wang N A, Ma N, Chen H B, et al. 2013. A preliminary study of precipitation characteristics in the hinterland of Badain Jaran Desert [J]. Advances in Water Science, 24(2): 153–160.]
王志, 王蕾, 刘连友, 等. 2007. 毛乌素沙地南缘沙丘水分的时空分布特征[J]. 干旱区研究, 24(1): 61–65. [Wang Z, Wang L, Liu L Y, et al. 2007. Preliminary study on the spatiotemporal distribution of moisture content in sand dunes in the southern marginal zone of the Mu Us Desert [J]. Arid Zone Research, 24(1): 61–65.]
杨晓玉, 邵天杰, 赵景波. 2016. 腾格里沙漠沙坡头地区旱季沙层含水量[J]. 水土保持通报, 36(2): 88–92. [Yang X Y, Shao T J, Zhao J B. 2016. Soil moisture content in sand layers of Shapotou area in Tengger Desert during dry season [J]. Bulletin of Soil and Water Conservation, 36(2): 88–92.]
叶冬梅, 秦佳琪, 韩胜利, 等. 2005. 乌兰布和沙漠流动沙丘不同部位水分动态研究[J]. 干旱区研究, 22(3): 367–370. [Ye D M, Qin J Q, Han S L, et al. 2005. Study on the dynamic change of soil moisture content at the different sites of mobile dunes in Uanbuh Desert, Inner Mongolia [J]. Arid Zone Research, 22(3): 367–370.]
张世军, 张希明, 王雪梅, 等. 2005. 古尔班通古特沙漠边缘春秋季沙丘水分状况初步研究[J]. 干旱区资源与环境, 19(3): 131–136. [Zhang S J, Zhang X M, Wang X M, et al. 2005. The research on soil moisture of shrifting dune and fixed dune at fringe of Guibantonggut Desert [J]. Journal of Arid Land Resources and Environment, 19(3): 131–136.]
赵景波, 陈志青, 马延东, 等. 2017a. 巴丹吉林沙漠沙山区高含量薄膜水与水分平衡研究[J]. 地理科学, 37(6): 960–966. [Zhao J B, Chen Z Q, Ma Y D, et al. 2017a. Film moisture with high content in sand layer and its movement in mega-dune of the Badain Jaran Desert [J]. Scientia Geographica Sinica, 37(6): 960–966.]
赵景波, 马延东, 罗小庆, 等. 2017b. 巴丹吉林沙漠沙山表层径流的发现及其指示意义[J]. 中国科学:地球科学, 47(4): 461-472. [Zhao J B, Ma Y D, Luo X Q, Yue D P, Shao T J, Dong Z B. 2017b. The discovery of surface runoff in the megadunes of Badain Jaran Desert and its significance [J]. Scientia Sinica (Terrae), 47(4): 461-472.]
赵景波, 马延东, 邢闪, 等. 2010. 腾格里沙漠宁夏中卫沙层含水量研究[J]. 山地学报, 28(6): 653–659. [Zhao J B, Ma Y D, Xing S, et al. 2010. Study on moisture content in sand layers of Tengger Desert in Zhongwei, Ningxia [J]. Journal of Mountain Science, 28(6): 653–659.]
赵景波, 邢闪, 邵天杰, 等. 2012. 腾格里沙漠南缘沙层含水量与水分平衡研究[J]. 自然资源学报, 27(3): 480–488. [Zhao J B, Xing S, Shao T J, et al. 2012. A study on content and balance of moisture in the southern Tengger Desert [J]. Journal of Natural Resources, 27(3): 480–488.]
赵景波, 郁科科, 邵天杰, 等. 2011. 腾格里沙漠沙层水分状况初步研究[J]. 资源科学, 33(2): 259–264. [Zhao J B, Yu K K, Shao T J, et al. 2011. A preliminary study on the water status in sand layers and its sources in the Tengger Desert [J]. Resources Science, 33(2): 259–264.]
朱玉伟, 陈启民, 刘茂秀, 等. 2008. 古尔班通古特沙漠南缘沙丘水分的时空分布特征[J]. 草业科学, 25(12): 6–11. [Zhu Y W, Chen Q M, Liu M X, et al. 2008. Spatiotemporal distribution of moisture content in sand dunes of the unirrigated forestation along the southern marginal zone of Gurbantunggut Desert [J]. Pratacultural Science, 25(12): 6–11.]
稿件与作者信息
郁科科
成爱芳
邵天杰
赵景波
基金项目:黄土与第四纪地质国家重点实验室开放基金(SKLLQG1625);宝鸡文理学院博士科研启动项目(ZK2017046)
Open Fund of State Key Laboratory of Loess and Quaternary Geology (SKLLQG1625); Ph. D. Research Startup Project, Baoji University of Arts and Sciences (ZK2017046)
出版历史
出版时间: 2019年2月15日 (版本1
参考文献列表中查看
地球环境学报
Journal of Earth Environment