专论 正式出版 版本 2 Vol 10 (4) : 325-334 2019
下载
继承性宇生核素在冰川地貌暴露测年中的研究进展
Research progress of inherited cosmogenic nuclide in Exposure dating of glacial geomorphology
: 2018 - 07 - 14
: 2018 - 10 - 30
: 2018 - 11 - 08
104 1 0
摘要&关键词
摘要:原地生成宇宙成因核素(in situ terrestrial cosmogenic nuclide,TCN)暴露测年技术已被广泛应用于全球冰川地貌的年代测定中。继承性核素(inheritance,核素残留)作为影响TCN暴露测年的重要因素之一,一直以来受到许多学者的关注。然而,继承性核素对暴露测年结果有无影响、影响程度有多大还存在争论。梳理该方面的研究将有助于进一步了解继承性宇生核素对TCN暴露测年的影响,进而提高测年的精确性。基于此,整理了2009—2017年期间共计54篇全球关于第四纪冰川宇生核素继承性文献,简述继承性核素的产生背景和研究进展,重点探讨核素残留对TCN暴露测年的影响程度以及在实际应用中如何降低其对测年数据的影响。结果表明:继承性核素会导致冰碛物出现异常老化和分散的暴露年龄,可通过选取合适的地貌部位及多样化的抽样和多样品方法,也可尝试采集现代冰川冰碛物定量化研究继承性核素的影响。
关键词:继承性核素;宇生核素;TCN暴露测年法;冰川地貌;测年误差
Abstract & Keywords
Abstract: Background, aim, and scopeIn situ terrestrial cosmogenic nuclide (TCN) has been widely used in the dating of glacier geomorphology. Inheritance is one of the important factors affecting the TCN exposure dating and has been the focus of many scholars. The research on this aspect will contribute to the quantitative analysis of TCN exposure dating error, and thus improve the accuracy of dating. Materials and methods In this paper, a total of 54 global literatures on quaternary glacial TCN inheritance were collected from 2009 to 2017, briefly describing the background and research progress of inherited nuclides, focusing on the influence of inheritance on TCN exposure dating and how to reduce its impact on dating data in practice. Results On the one hand, the complex exposure history of the sample and the reworking of geological features may lead to samples containing different degrees of inherited cosmogenic nuclide, which makes the age of glacial exposure significantly dispersible. On the other hand, in the study of TCN exposure dating, the true age of glacier landform is overestimated due to the inheritance of nuclide, which leads to the age of exposure of abnormal aging. Discussion Among the 1379 dating samples counted in this paper, glacial boulder is about 94%, and glacial boulder is the most common dating object in the study of TCN exposure dating. When a glacial boulder age than other boulder on the same moraine ridge is much older, the inheritance of nuclide is obvious, therefore, how to choose the glacial boulder to determine the formation of the moraine ridge appears very necessary. In addition, the sampling location and the number of collections of glacial boulder are also worth considering. Conclusions Research results indicate that the inheritance of nuclide can lead to the age of old and scattered exposure of moraine, by choosing appropriate landscape areas and diverse methods of sampling, also can try to collect modern glacier moraine quantitative research the effects of inheritance. Recommendations and perspectives The study of the inheritance of cosmogenic nuclide will be of great significance to the establishment of more accurate chronological frameworks and TCN chronology studies of glacial geomorphology mentioned by relevant scholars.
Keywords: inheritance; cosmogenic nuclide; TCN exposure dating; glacial landforms; dating error
20世纪80年代以来,宇宙成因核素暴露测年技术(in situ terrestrial cosmogenic nuclide,TCN)作为第四纪冰川研究中应用最成功的测年技术之一(Dyke et al,2002;周尚哲和李吉均,2003;Li et al,2011;Wang et al,2013),为全球第四纪冰川地貌的年代测定和冰川序列重建提供了数据支撑(王杰和周尚哲,2009;Owen et al,2012;Zhang et al,2014,2015;Zhang et al,2018)。其中,关于青藏高原地区的TCN研究大约有1800个10Be暴露测年数据发表(1999—2017年统计数据,如图1所示)。
然而随着大量测年数据的发表,TCN暴露年代与冰川地貌的真实年代存在差异的问题也逐渐凸显,其原因和解决方法亟待深入剖析(Hallet and Putkonen,1994;Applegate et al,2010,2012;Balco,2011;Owen and Dortch,2014)。准确的地貌年代是重建冰川演化序列的基础,定量化研究TCN暴露测年误差的相关因素是未来研究重点之一(Heyman et al,2011a;王建等,2012;赵井东等,2013)。继承性核素(Inheritance,核素残留)作为影响暴露测年的重要因素之一,一直受到许多学者的关注(Davis et al.,1999;Pukonen and Swanson,2003;Balco,2011)。近年来,关于TCN暴露测年研究中继承性核素问题引起了大量冰川学家和年代学家的关注和争论(Makos et al,2013;Dyke et al,2014;Rades et al,2015;Blomdin et al,2016;Çiner et al,2017)。在TCN暴露测年研究中,通常是假设所测的样品在最后一次暴露之前没有携带本地生宇生核素,也就是意味着在最后一次暴露之前没有继承性的宇生核素。然而,这样的假设是否对不同的采样部位、不同的测年样品都成立?还有待于进一步研究。此外,测年样品中继承性核素对暴露测年结果将会产生多大的影响也有待于进一步研究和验证。
因此,基于上述问题,本文整理了2009—2017年共计54篇全球关于第四纪冰川宇生核素继承性文献,归纳总结先前学者的研究成果,并尝试性提出可能的解决途径,藉此希望为TCN暴露测年技术测定冰川地貌年代以及建立更加准确的年代学框架提供新的参考与借鉴。
1   数据收集与国内外研究进展
1.1   数据收集
本文总结分析了2009—2017年期间54篇全球关于第四纪冰川宇生核素继承性文章,汇总了原始文献中TCN暴露测年的采样环境(纬度、经度、样品类型),数据分布如图2所示,其对应的研究区(1—24)如表1所示。样品类型主要包括:漂砾(1298个,约占94.1%),基岩(38个,约占2.8%),冰碛垄表面的沉积碎屑样品(24个,约占1.7%)和小砾石(19个,约占1.4%)。
1.2   国内外研究进展
宇宙成因核素暴露测年技术已成为重建冰川和冰盖变化历史的首选方法(Balco,2011),随着TCN暴露测年技术的不断发展与应用,许多学者开始关注继承性核素对暴露测年的影响(Davis et al,1999;Abramowski et al,2006;Ballantyne,2012;Dyke et al,2014;Grin et al,2016;Hein et al,2017)。关于继承性宇生核素对TCN暴露测年的影响(有无影响?是否可以忽略?)存在着争论,国内外众多学者就其进行了研究。Davis et al(1999)利用TCN 10Be和26Al测年技术测定加拿大北极东部冰碛垄上漂砾的暴露年代,发现继承性核素的影响可以忽略;Putkonen and Swanson(2003)统计并分析了638个漂砾暴露年代,研究表明仅有低于3%的漂砾存在先前暴露(继承性核素);Hein et al(2009)对阿根廷巴塔哥尼亚保存较完好的冰川沉积物进行宇生核素暴露测年研究,发现核素残留的影响是微不足道的。Heyman et al(2011b)利用“先期暴露模型”和“不完全暴露模型”分析青藏高原(1420个冰川漂砾)、北半球大陆冰盖(631个冰川漂砾)、现代冰川(208个冰川漂砾)年代数据,认为前期暴露(继承性核素)对暴露测年的影响远小于后期地质地貌过程(不完全暴露)的影响。Çiner et al(2017)发现冰碛垄表面的漂砾和小砾石(cobbles)继承性核素浓度非常小,可以忽略不计,而石冰川(rock glacier)上的漂砾具有较高的继承性核素浓度。Hein et al(2017)对南美洲南部巴塔哥尼亚中部(Patagonia)冰川前缘的小砾石(pebble)进行了TCN 10Be分析,发现冰川冰碛物的继承性宇生核素浓度非常小,可以忽略不计。
然而,另有学者认为继承性核素影响比较大,Glasser et al(2012)对不列颠群岛最高的阿轮(Aran)山脉基岩上8个富含石英的样品进行宇宙成因同位素10Be和26Al分析,发现其中有两个样品的暴露年龄要比其他样品的年龄大得多,这表明其可能受到核素继承性的影响。Dortch et al(2013)对青藏高原地区西部的喜马拉雅山,帕米尔山脉和天山山脉进行TCN暴露测年研究,在分析的595个样品中,8%的样品受到核素继承性的影响,有32%的样品暴露年代受到低估,虽然被低估的样品个数比受到继承性影响的样品个数要多出四倍,但是核素继承性的相对重要性可以达到三倍。并且统计分析样品暴露年代的异常值,更加证明了核素继承性的重要性。Dyke et al(2014)对格陵兰冰原(Gris)进行宇生核素10Be暴露测年研究,发现暴露年龄更大的样品可能反映了核素继承性的影响。在Bernstorffs峡湾的基岩样品的平均年龄比伴随的不规则样品的平均年龄要大,也有可能基岩受到核素继承性的影响。Davis et al(2015)利用TCN 10Be和26Al暴露测年法对卡塔丁山脉冰川进行研究,发现Katahdin盆地内冰碛物暴露年龄比 Littleton冰碛物暴露年龄大,其中一个原因可能受到宇生核素继承性的影响。Blomdin et al(2016)在天山区域重新计算先前发表的10Be暴露年代并结合新的测年数据(共计114个),发现大约60%的测年数据受核素继承性的影响。Li et al(2016)利用TCN10Be测年技术对天山山脉小冰期冰川进展进行研究,发现来自小型冰川(小而薄)的冰碛物较易受到核素继承性的影响。
综上所述,关于继承性核素对暴露测年研究的影响是一个比较复杂的问题,不同学者对继承性核素是否对TCN暴露测年是否产生影响以及产生影响的程度观点不同,但无可非议的是,随着TCN暴露测年技术的发展、测年精度要求不断提高,继承性核素愈加受到众多学者的关注和研究,这将有利于定量化研究TCN暴露测年误差,从而更加准确地测定冰川地貌的真实年代。


图1   青藏高原地区1999—2017年TCN统计数据图(据Wang et al(2013)修改)
Fig.1 Location of published TCN exposure age studies of Tibean Plateau from 1999 to 2017 (modified after Wang et al (2013))
序号代表青藏高原及其周边地区涉及TCN 10Be暴露研究的36个研究区。The serial number represents 36 research areas on TCN 10Be exposure in the in the Tibetan Plateau and peripheral mountains.


图2   全球TCN暴露测年继承性核素研究位置分布图
Fig.2 The location of published TCN inheritance studies of the whole world
该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1611号的标准地图制作,底图无修改
表1   全球TCN暴露测年继承性核素研究信息
编号
No.
研究区
Study Region
数据来源
Publication
编号
No.
研究区
Study Region
数据来源
Publication
1巴塔哥尼亚(Patagonia)Hein et al, 2009, 201713爱尔兰冰盖(BIIS)Ballantyne, 2012
2土耳其(Turkey)Zahno et al, 2010; Çiner et al, 2015, 201714青藏高原地区(Tibet)Barnard et al,2004; Owen et al, 2006; Seong et al, 2009; Heyman et al, 2011a; Wang et al, 2013; Zech et al, 2013; Xu and Yi, 2014; Rades et al, 2015; Grin et al, 2016
3天山(Tian Shan)Abramowski et al, 2006; Murari et al, 2014; Li et al, 2011, 2014; Li et al, 2016; Blomdin et al, 201615科罗拉多州(Colorado)Benson et al, 2007; Dühnforth and Anderson, 2011
4挪威(Norway)Matthews et al, 201716比利牛斯山(Pyrenees)Crest et al, 2017
5欧洲阿尔卑斯山(European Alps)Ivy-Ochs et al, 2007; Akçar et al, 2014; Wirsig et al, 201617格陵兰(Greenland)Dyke et al, 2014; Strunk et al, 2017
6巴芬岛(Baffin Island)Briner et al, 2005, 201418丹麦(Denmark)Houmark-Nielsen et al, 2012
7达特穆尔(Dartmoor)Gunnell et al, 201319古斯塔夫冰流(Gustav Ice Stream)Nývlt et al, 2014
8瑞士山谷冰川(Arolla)Abbühl et al, 200920死亡谷(Death Valley)Owen et al, 2011
9东西伯利亚(SE Iberia)Rodés et al, 201421苏格兰(Cairngorm Mountains)Phillips et al, 2006
10科迪勒拉冰盖(CIS)Stroeven et al, 2010, 201422智利北部(Encierro)Zech et al, 2006
11英格兰西北部的湖区(,northwest England)Wilson et al, 201323太白山脉(Tai Bai Mountains)Zhang et al, 2016
12锡金(Sikkim)Abrahami et al, 201624高塔特拉山脉
(Polish High Tatra Mountains)
Makos et al, 2013
2   继承性核素对暴露测年的影响
2.1暴露年龄分散
继承性核素一般被定义为最初的核素浓度,即在暴露前期积累的宇宙生成同位素(Brook et al,1993,1996;Ivy-Ochs and Schaller,2009),然而这个初始浓度并不是均匀地分布在地貌单位上(Çiner et al,2017),不同的地貌单位具有不同的继承性核素浓度,从而产生了广泛分散的暴露年龄。一般情况下,通常将产生继承性核素的途径归纳为以下三种(Dorth et al,2013;Murari et al,2014):其一为原地暴露,即在冰川运动之前于基岩中的核素继承性积累,可以显著地影响冰川沉积物的年代。其二为在冰川运动过程中的先前暴露,在初始运输过程中产生的核素残留数量一般较小。可能对年轻的冰期产生较为明显的影响。最后,由于地质地貌的再造作用而产生的核素遗传,其可能会对冰碛物的暴露年龄产生重大影响。一般而言地质地貌的再造作用,即从冰川、冲积扇、岩石崩落等过程中产生的合并的碎屑沉积物,可能含有大量的核素遗传,以这种方式整合的碎屑物通过统计方法很容易被识别为异常值(Hein et al,2009,2017;Li et al,2016)。
因此,样品复杂的暴露历史和地质地貌的再造作用均可能导致样品含有不同程度的核素残留,从而使冰碛物暴露年龄具有明显分散的现象。
2.2暴露年龄高估
在TCN暴露测年研究中,继承性核素会导致冰川地貌的真实年代被高估,从而出现异常老化的暴露年龄。Zech et al(2006)应用TCN 10Be对智利北部的Encierro山谷进行冰川序列的研究,结果表明该冰川序列存在异常偏老的暴露年龄,原因可能是受到了核素继承性的影响。Ballantyne(2012)统计分析了英爱尔兰冰原(BIIS)160多个10Be和36Cl数据,结果表明样品暴露年龄受早期宇生核素继承性影响的可能性较大,受冰川侵蚀和冰川沉积的冰川漂砾都有可能保留先前宇生核素浓度,从而使样品年代偏老。Davis et al(2015)利用宇生核素暴露测年技术对卡塔丁山脉(Katahdin)冰川进行研究,发现Katahdin的盆地内冰碛物暴露年龄比 Littleton冰碛物暴露年龄大,宇宙核素继承性的影响可能是其原因之一。Gunnell et al (2013)对英格兰西南部的达特穆尔(Dartmoor)进行TCN 10Be分析,发现较老的冰碛物用核素继承性解释更加合理。
2.3   高估区域核素生成速率
利用宇生核素暴露测年技术测定已知暴露年代的样品可以校正区域宇生核素生成速率,然而,样品中继承性核素会造成宇生核素生成速率偏高。Akcar et al(2014)利用宇生核素暴露测年技术测定9个已知暴露年代(AD1717)的花岗岩漂砾来校正宇生核素10Be的生成速率((4.60±0.38) atom·g-1·a-1和(5.26±0.43) atom·g-1·a-1),该生成速率明显高于其他区域的校正结果,被认为是样品收到继承性核素的影响。
3   如何降低继承性核素对测年的影响
在对第四纪冰川地貌进行TCN测年过程中,继承性宇生核素会导致较为明显的老化和分散的暴露年龄,影响冰碛物的真实年代。另外,核素残留并不容易被辨别,并且至今没有简单或完全可靠的方法来检测它存在或评估其大小(Benson et al,2007;Dorth et al,2013),因此,本节主要探讨如何选取样品以及拟尝试定量化分析来尽可能降低核素残留对测年结果的影响。
3.1   样品的选取
本文所统计的1379个测年样品中,冰川漂砾约占有94%,冰川漂砾是冰川地貌TCN暴露测年研究中最为常见的测年对象,通常选择直径较大(大于2 m)有一定磨圆、顶部较为平坦、位置比较牢固的砾石。当一块冰川漂砾的年龄比同一冰碛垄上其他漂砾的年龄大得多时,核素残留是显而易见的(Benson et al,2007),因此,如何选择冰川漂砾来确定冰碛垄的形成年代显得十分必要。Stroeven et al(2014)认为在解释冰川环境的继承性核素时,需考虑以下三个过程:首先,如果样品在冰川进退之前有暴露历史(即基岩表面被侵蚀小于2 m或来自于先前暴露漂砾),那么暴露年龄比所对应的冰川年代偏老。与之相反的是,如果样品在冰川作用后被沉积物覆盖并且随后被侵蚀出露,则暴露年龄比冰川进退的年代偏年轻(Balco,2011)。最后,暴露后的侵蚀风化去除了累积的宇宙成因核素,导致测量的核素浓度降低,表现为较为年轻的暴露年龄。综上,同一冰碛垄上的不同冰川漂砾中所获得的最长暴露时间最能代表冰碛垄的形成年代。
此外,冰川漂砾的采样部位和采集数量也是值得考虑的问题。王建等(2010)认为在利用宇生核素进行冰川漂砾和冰碛物年代测定时,需考虑核素残留的影响,采集漂砾样品时,要尽量选取具有明显冰川磨蚀痕迹的作用面。Matthews et al(2017)研究表明在对冰川暴露年龄测定方面,采取多样化的抽样方法,即大量的小岩石颗粒成为一个样本,而不是使用单一的巨石,将会有利于减少核素继承性误差。李英奎等(2005)认为对冰川暴露年代的测定需要采用多样品方法,对较老和较大规模的冰碛物需要使用6—7个样品,对较小规模冰碛物,也需要使用1—4个样品。综上,采集漂砾样品时,要尽量选取具有明显冰川磨蚀痕迹的作用面,采用多样化的抽样和多样品的方法进行科学性的采样,可在一定程度上降低核素继承性的影响。
3.2量化分析与模型应用
由于难以定量化估算测年样品中继承性核素浓度,因此,在计算过程中通常假设样品在最后一次暴露前其继承性核素浓度为0,显然,这样的假设在有时是不适合的。Matthews et al(2017)认为利用现代冰川退却后(退却时间已知)的沉积物进行宇生核素暴露测年研究是检验核素继承性的最好方法之一。Davis et al(1999)是第一个利用现代冰川沉积物测试核素继承性的学者。随后,一些学者在冰川地貌暴露测年过程中会选择少数样品进行继承性核素残留测试(Barnard et al,2004;Heyman et al,2011a),来分析继承性核素对暴露测年结果的影响。因此,可以通过现代冰川冰碛物或者现代冰川侵蚀地貌的样品(暴露时间非常短,暴露期间样品中TCN生成量可以忽略不计)中TCN浓度的测定来定量化研究继承性核素对暴露测年的影响程度。王建等(2010)测定了海螺沟现代冰碛物中TCN 10Be的浓度,研究表明现代冰碛物中TCN 10Be的浓度比较低,一般不大于2×104 atoms·g-1,对暴露年代的影响一般不大于0.61 ka;Murari et al(2014)测定了Chorabari冰川表面漂砾的暴露年代, 10Be暴露年龄分布从60 a BP到540 a BP,这些数据表明,可能有多达0.5 ka 10Be核素残留。这样的继承性核素浓度对万年尺度的冰川地貌年代可以忽略,但是对于小冰期和新冰期的冰川地貌年代测定会有影响。此外,利用数学模型对测年数据进行统计分析也可以用来判别继承性核素对暴露测年的影响(Hallet and Putkonen,1994;Putkonen and Swanson,2003;Applegate et al,2010,2012;Heyman et al,2011b)。
4   结论
本文通过对54篇全球关于第四纪冰川宇生核素继承性文献进行整理与分析,概括和总结出继承性核素的产生背景和发展现状,同时探讨了核素残留对TCN暴露测年的影响及如何在实际应用中降低其影响程度。可以得出如下认识:许多学者对继承性核素对暴露测年的影响越来越重视;继承性核素会导致冰川地貌的真实年代被高估,从而出现异常老化和分散的暴露年龄,影响冰碛物的真实年代,同时对校正区域核素生成速率有所影响。
由于冰川地貌用于暴露测年的样品来源复杂、受到冰川侵蚀影响程度不同、不同的样品类型所含有的继承性核素浓度不同、地貌的暴露时间尺度等综合因素的影响,继承性核素对暴露测年结果的影响有所差异。而且核素残留并不容易被辨别,并且至今没有简单或完全可靠的方法来检测它存在或评估其大小,但笔者认为可通过选取合适的地貌部位及多样化的抽样和多样品方法进行科学采样,研究现代冰碛物中继承性核素浓度以及数学模型的应用来分析继承性核素的影响。
致谢:
感谢审稿专家给予的意见和建议。
李英奎, Jon Harbor, 刘耕年, 等. 2005. 宇宙核素地学研究的应用现状与存在问题[J]. 水土保持研究, 12(4): 146–152. [Li Y K, Harbor J, Liu G N, et al. 2005. Applications and limitations of in situ cosmogenic nuclides in earth sciences [J]. Research of Soil and Water Conservation, 12(4): 146–152.]
王建, 徐晓彬, 张志刚, 等. 2010. 海螺沟现代冰碛物中的宇生核素10Be浓度分析[J]. 第四纪研究, 30(5): 956–961. [Wang J, Xu X B, Zhang Z G, et al. 2010. Inherited cosmogenic nuclide 10Be in modern moraine of Hailuogou glacier in the Gongga Mountains, Sichuan Province, China [J]. Quaternary Sciences, 30(5): 956–961.]
王建, 张志刚, 徐孝彬, 等. 2012. 青藏高原东南部稻城古冰帽南缘第四纪冰川活动的宇生核素年代研究[J]. 第四纪研究, 32(3): 394–402. [Wang J, Zhang Z G, Xu X B, et al. 2012. Cosmogenic isotopes dating of Quaternary glacial activity of the paleao-Daocheng ice cape, on the southeastern part of the Qinghai-Xizang Plateau [J]. Quaternary Sciences, 32(3): 394–402.]
王杰, 周尚哲. 2009. 宇宙成因核素技术在第四纪冰川测年研究中的评述及展望[J]. 冰川冻土, 31(3): 501–509. [Wang J, Zhou S Z. 2009. Cosmogenic nuclides method applied to Quaternary glaciation dating: review and prospect [J]. Journal of Glaciology and Geocryology, 31(3): 501–509.]
赵井东, 王杰, 殷秀峰. 2013. 中国第四纪冰川研究的现状与争议——兼记首届“中国第四纪冰川与环境变化”研讨会[J]. 冰川冻土, 35(1): 119–125. [Zhao J D, Wang J, Yin X F. 2013. Quaternary glaciations research in China: current status and controversy [J]. Journal of Glaciology and Geocryology, 35(1): 119–125.]
周尚哲, 李吉均. 2003. 第四纪冰川测年研究新进展[J]. 冰川冻土, 25(6): 660–666. [Zhou S Z, Li J J. 2003. New dating results of quaternary glaciations in China [J]. Journal of Glaciology and Geocryology, 25(6): 660–666.]
Abbühl L M, Akçar N, Strasky S, et al. 2009. A zero-exposure time test on an erratic boulder: evaluating the problem of pre-exposure in surface exposure dating [J]. Chinese Community Doctors, 15(1): 96–9.
Abrahami R, van der Beek P, Huyghe P, et al. 2016. Decoupling of long-term exhumation and short-term erosion rates in the Sikkim Himalaya [J]. Earth and Planetary Science Letters, 433: 76–88.
Abramowski U, Bergau A, Seebach D, et al. 2006. Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan) [J]. Quaternary Science Reviews, 25(9/10): 1080–1096.
Akçar N, Ivy-ochs S, Deline P, et al. 2014. Minor inheritance inhibits the calibration of the 10Be production rate from the AD 1717 Val Ferret rock avalanche, European Alps [J]. Journal of Quaternary Science, 29(4): 318–328.
Applegate P J, Urban N M, Keller K, et al. 2012. Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms [J]. Quaternary Research, 77(2): 293–304.
Applegate P J, Urban N M, Laabs B J C, et al. 2010. Modeling the statistical distributions of cosmogenic exposure dates from moraines [J]. Geoscientific Model Development, 3: 293–307.
Balco G. 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010 [J]. Quaternary Science Reviews, 30(1/2): 3–27.
Ballantyne C K. 2012. Extent and deglaciation chronology of the last British-Irish Ice Sheet: implications of exposure dating using cosmogenic isotopes [J]. Quaternary International, 279/280: 35–36.
Barnard P L, Owen L A, Finkel R C. 2004. Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya [J]. Sedimentary Geology, 165(3/4): 199–221.
Benson L, Madole R, Kubik P, et al. 2007. Surface-exposure ages of Front Range moraines that may have formed during the Younger Dryas, 8.2 cal ka, and Little Ice Age events [J]. Quaternary Science Reviews, 26: 1638–1649.
Blomdin R, Stroeven A P, Harbor J M, et al. 2016. Evaluating the timing of former glacier expansions in the Tian Shan: A key step towards robust spatial correlations [J]. Quaternary Science Reviews, 153: 78–96.
Briner J P, Lifton N A, Miller G H, et al. 2014. Using in situ cosmogenic 10Be, 14C, and 26Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada [J]. Quaternary Geochronology, 19: 4–13.
Briner J P, Miller G H, Davis P T, et al. 2005. Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada [J]. Canadian Journal of Earth Sciences, 42(1): 67–84.
Brook E J, Kurz M D, Ackert R P Jr, et al. 1993. Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in situ cosmogenic 3He and 10Be [J]. Quaternary Research, 39(1): 11–23.
Brook E J, Nesje A, Lehman S J, et al. 1996. Cosmogenic nuclide exposure ages along a vertical transect in western Norway: implications for the height of the Fennoscandian ice sheet [J]. Geology, 24(3): 207–210.
Çiner A, Sarıkaya M A, Yıldırım C. 2015. Late Pleistocene piedmont glaciations in the Eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in southern Turkey [J]. Quaternary Science Reviews, 116: 44–56.
Çiner A, Sarıkaya M A, Yıldırım C. 2017. Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface exposure dating: Moraines vs. rock glaciers [J]. Quaternary Geochronology, 42: 76–88.
Crest Y, Delmas M, Braucher R, et al. 2017. Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees [J]. Geomorphology, 278: 60–77.
Davis P T, Bierman P R, Corbett L B, et al. 2015. Cosmogenic exposure age evidence for rapid Laurentide deglaciation of the Katahdin area, west-central Maine, USA, 16 to 15 ka [J]. Quaternary Science Reviews, 116: 95–105.
Davis P T, Bierman P R, Marsella K A, et al. 1999. Cosmogenic analysis of glacial terrains in the eastern Canadian Arctic: a test for inherited nuclides and the effectiveness of glacial erosion [J]. Annals of Glaciology, 28(1): 181–188.
Dortch J M, Owen L A, Caffee M W. 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen [J]. Quaternary Science Reviews, 78: 188–208.
Dühnforth M, Anderson R S. 2011. Reconstructing the glacial history of Green Lakes Valley, north Boulder Creek, Colorado Front Range [J]. Arctic, Antarctic, and Alpine Research, 43(4): 527–542.
Dyke A S, Andrews J T, Clark P U, et al. 2002. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum [J]. Quaternary Science Reviews, 21(1/2/3): 9–31.
Dyke L M, Hughes A L C, Murray T, et al. 2014. Evidence for the asynchronous retreat of large outlet glaciers in southeast Greenland at the end of the last glaciation [J]. Quaternary Science Reviews, 99: 244–259.
Glasser N F, Hughes P D, Fenton C, et al. 2012. 10Be and 26Al exposure-age dating of bedrock surfaces on the Aran ridge, Wales: evidence for a thick Welsh Ice Cap at the Last Glacial Maximum [J]. Journal of Quaternary Science, 27(1): 97–104.
Grin E, Ehlers T A, Schaller M, et al. 2016. 10Be surface-exposure age dating of the Last Glacial Maximum in the northern Pamir (Tajikistan) [J]. Quaternary Geochronology, 34: 47–57.
Gunnell Y, Jarman D, Braucher R, et al. 2013. The granite tors of Dartmoor, Southwest England: rapid and recent emergence revealed by Late Pleistocene cosmogenic apparent exposure ages [J]. Quaternary Science Reviews, 61: 62–76.
Hallet B, Putkonen J. 1994. Surface dating of dynamic landforms: young boulders on aging moraines [J]. Science, 265(5174): 937–940.
Hein A S, Cogez A, Darvill C M, et al. 2017. Regional mid-Pleistocene glaciation in central Patagonia [J]. Quaternary Science Reviews, 164: 77–94.
Hein A S, Hulton N R J, Dunai T J, et al. 2009. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels [J]. Earth and Planetary Science Letters, 286(1/2): 184–197.
Heyman J, Stroeven A P, Caffee M W, et al. 2011a. Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion [J]. Quaternary Science Reviews, 30(15/16): 1988–2001.
Heyman J, Stroeven A P, Harbor J M, et al. 2011b. Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages [J]. Earth and Planetary Science Letters, 302(1/2): 71–80.
Houmark-Nielsen M, Linge H, Fabel D, et al. 2012. Cosmogenic surface exposure dating the last deglaciation in Denmark: Discrepancies with independent age constraints suggest delayed periglacial landform stabilisation [J]. Quaternary Geochronology, 13: 1–17.
Ivy-Ochs S, Kerschner H, Schlüchter C. 2007. Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: the Alpine perspective [J]. Quaternary International, 164/165: 53–63.
Ivy-Ochs S, Schaller M. 2009. Chapter 6 examining processes and rates of landscape change with cosmogenic radionuclides [J]. Radioactivity in the Environment, 16: 231–294.
Li Y K, Liu G N, Chen Y X, et al. 2014. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating [J]. Quaternary Science Reviews, 98: 7–23.
Li Y K, Liu G N, Kong P, et al. 2011. Cosmogenic nuclide constraints on glacial chronology in the source area of the Urumqi River, Tian Shan, China [J]. Journal of Quaternary Science, 26(3): 297–304.
Li Y N, Li Y K, Harbor J, et al. 2016. Cosmogenic 10Be constraints on Little Ice Age glacial advances in the eastern Tian Shan, China [J]. Quaternary Science Reviews, 138: 105–118.
Makos M, Nitychoruk J, Zreda M. 2013. The Younger Dryas climatic conditions in the Za Mnichem Valley (Polish High Tatra Mountains) based on exposure-age dating and glacier-climate modelling [J]. Boreas, 42(3): 745–761.
Matthews J A, Shakesby R A, Fabel D 2017. Very low inheritance in cosmogenic surface exposure ages of glacial deposits: A field experiment from two Norwegian glacier forelands [J]. The Holocene, 27(9): 1406–1414.
Murari M K, Owen L A, Dortch J M, et al. 2014. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen [J]. Quaternary Science Reviews, 88: 159–182.
Nývlt D, Braucher R, Engel Z, et al. 2014. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition [J]. Quaternary Research, 82(2): 441–449.
Owen L A, Caffee M W, Bovard K R, et al. 2006. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India [J]. Geological Society of America Bulletin, 118(3): 383–392.
Owen L A, Chen J, Hedrick K A, et al. 2012. Quaternary glaciation of the Tashkurgan Valley, southeast Pamir [J]. Quaternary Science Reviews, 47: 56–72.
Owen L A, Dortch J M. 2014. Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen [J]. Quaternary Science Reviews, 88:14–54.
Owen L A, Frankel K L, Knott J R, et al. 2011. Beryllium-10 terrestrial cosmogenic nuclide surface exposure dating of Quaternary landforms in Death Valley [J]. Geomorphology, 125(4): 541–557.
Phillips W M, Hall A M, Mottram R, et al. 2006. Cosmogenic 10Be and 26Al exposure ages of tors and erratics, Cairngorm Mountains, Scotland: Timescales for the development of a classic landscape of selective linear glacial erosion [J]. Geomorphology, 73(3/4): 222–245.
Putkonen J, Swanson T. 2003. Accuracy of cosmogenic ages for moraines [J]. Quaternary Research, 59(2): 255–261.
Rades E F, Hetzel R, Strobl M, et al. 2015. Defining rates of landscape evolution in a south Tibetan graben with in situ-produced cosmogenic 10Be [J]. Earth Surface Processes and Landforms, 40(14): 1862–1876.
Rodés Á, Pallàs R, Ortuño M, et al. 2014. Combining surface exposure dating and burial dating from paired cosmogenic depth profiles. Example of El Límite alluvial fan in Huércal-Overa basin (SE Iberia) [J]. Quaternary Geochronology, 19: 127–134.
Seong Y B, Owen L A, Yi C L, et al. 2009. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan [J]. Geomorphology, 103(2): 227–250.
Stroeven A P, Fabel D, Codilean A T, et al. 2010. Investigating the glacial history of the northern sector of the Cordilleran Ice Sheet with cosmogenic 10Be concentrations in quartz [J]. Quaternary Science Reviews, 29(25/26): 3630–3643.
Stroeven A P, Fabel D, Margold M, et al. 2014. Investigating absolute chronologies of glacial advances in the NW sector of the Cordilleran Ice Sheet with terrestrial in situ cosmogenic nuclides [J]. Quaternary Science Reviews, 92: 429–443.
Strunk A, Knudsen M F, Egholm D L, et al. 2017. One million years of glaciation and denudation history in west Greenland [J]. Nature Communications, 8: 14199. DOI: 10.1038/ncomms14199.
Wang J, Kassab C, Harbor J M, et al. 2013. Cosmogenic nuclide constraints on late Quaternary glacial chronology on the Dalijia Shan, northeastern Tibetan Plateau [J]. Quaternary Research, 79(3): 439–451.
Wilson P, Schnabel C, Wilcken K M, et al. 2013. Surface exposure dating (36Cl and 10Be) of post-Last Glacial Maximum valley moraines, Lake District, northwest England: some issues and implications [J]. Journal of Quaternary Science, 28(4): 379–390.
Wirsig C, Zasadni J, Christl M, et al. 2016. Dating the onset of LGM ice surface lowering in the High Alps [J]. Quaternary Science Reviews, 143: 37–50.
Xu X K, Yi C L. 2014. Little Ice Age on the Tibetan Plateau and its bordering mountains: Evidence from moraine chronologies [J]. Global and Planetary Change, 116: 41–53.
Zahno C, Akçar N, Yavuz V, et al. 2010. Chronology of Late Pleistocene glacier variations at the Uludağ Mountain, NW Turkey [J]. Quaternary Science Reviews, 29(9/10): 1173–1187.
Zech R, Kull C, Veit H. 2006. Late Quaternary glacial history in the Encierro Valley, northern Chile (29°S), deduced from 10Be surface exposure dating [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(2/3/4): 277–286.
Zech R, Röhringer I, Sosin P, et al. 2013. Late Pleistocene glaciations in the Gissar Range, Tajikistan, based on 10Be surface exposure dating [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 253–261.
Zhang M Y, Mei J, Zhang Z G, et al. 2018. 10Be exposure ages obtained from Quaternary glacial landforms on the Tibetan Plateau and in the surrounding area [J]. Acta Geologica Sinica (English Edition), 92(2): 786–800.
Zhang W, Liu L, Chen Y X, et al. 2016. Late glacial 10Be ages for glacial landforms in the upper region of the Taibai glaciation in the Qinling Mountain range, China [J]. Journal of Asian Earth Sciences, 115: 383–392.
Zhang Z G, Wang J, Xu X B, et al. 2015. Cosmogenic 10Be and 26Al chronology of the last glaciation of the palaeo-Daocheng Ice Cap, southeastern Qinghai-Tibetan Plateau [J]. Acta Geologica Sinica (English Edition), 89(2): 575–584.
Zhang Z G, Xu X B, Wang J, et al. 2014. Last deglaciation climatic fluctuation record by the palaeo-Daocheng Ice Cap, southeastern Qinghai-Tibetan Plateau [J]. Acta Geologica Sinica (English Edition), 88(6): 1863–1874.
稿件与作者信息
张梦媛
ZHANG Mengyuan
梅静
MEI Jing
张志刚
ZHANG Zhigang
zhangzhigang840620@126.com
王建
WANG Jian
梁兴江
LIANG Xingjiang
国家自然科学基金项目(41503054);中国博士后科学基金面上项目(2015M582728);江苏省高校优势学科建设工程项目(164320H116)
National Natural Science Foundation of China (41503054); China Postdoctoral Science Foundation (2015M582728); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (164320H116)
出版历史
出版时间: 2018年11月8日 (版本2
参考文献列表中查看
地球环境学报
Journal of Earth Environment