研究论文 正式出版 版本 4 Vol 10 (5) : 479-486 2019
下载
中国不同纬度现代表层土壤水氢同位素分布特征及其影响因素
Hydrogen isotope ratios of modern soil water from different latitudes parts of China: characteristics and effect factors
: 2018 - 11 - 24
: 2019 - 01 - 17
: 2019 - 01 - 21
130 1 0
摘要&关键词
摘要:土壤水的氢氧同位素组成是开展环境示踪和土壤水文学研究的重要基础。目前的研究集中在对大气降水的氢同位素组成的相关信息认识上,关于大区域范围的环境因素对于土壤水和大气降水的氢同位素组成影响的报道很少。2016年9月从中国南部地区一直到东北地区(北纬20°—51°)采集了43个表层土壤样品,并测定表层土壤水δD值。结果表明:不同纬度表层土壤水的δD值与降水δD值存在正相关关系(R2 = 0.40,p<0.01),表明表层土壤水δD值总体响应大气降水的δD值变化,但可能也受其他因素影响。大气降水的δD值与表层土壤水δD值均有明显的纬度效应,但它们的δD值随纬度变化的程度并不相同,表明虽然表层土壤水主要的来源是降水,但环境变化对表层土壤水的氢同位素组成产生了一定影响,这是利用表层土壤水δD值示踪环境或者与植物中的生物标志物的氢同位素组成结合来示踪环境的基础。
关键词:氢同位素;土壤水;大气降水;纬度
Abstract & Keywords
Abstract: Background, aim, and scope Soil water is the critical matter in crops and plant recovering, thus is has significant value in environment research. In previous study, rain water has been proved that it is one of main sources of soil water and rain water, which can be used to measure the procedure of infiltration, evaporation and mixture of soil water in soil. In recent years, there are many studies which claim that the biomarker δD in geological carrier (such as soil and lake sediment) can be used to reconstruct palaeoenvironment and paleoecology etc., especially it is important for rebuilding the ancient precipitation. In addition, recent studies are mainly focused on the relationship between leaf wax δD and precipitation δD, few of them concern with soil water δD. Soil water δD generally comes from precipitation, nevertheless, it has differences comparing with precipitation δD. Therefore, the research of soil water δD may cause significant influences to the comprehension of the constitution changes of leaf wax hydrogen isotope from terrestrial plants. The propose of this study is to analyze soil δD from precipitation and other factors (such as latitude) by investigating the topsoil water δD from different latitude systematically. Also to provide understanding of environmental effects to the research of leaf wax hydrogen isotope of terrestrial plant in mechanism aspect. Materials and methods We collected 43 topsoil samples from south to northwest parts of China (20°N — 51°N) in the rain season, 2016. Following that, we analyzed the soil samples to obtain the soil water δD. Soil water samples were collected by using vacuum distillation. Stable isotopic composition of liquid water was determined by using a Liquid Water Isotope Analyzer Picarro L2130-I (Picarro, Inc., Sunnyvale, CA, USA). Results (1) Precipitation δD has latitude effects, in comparison, soil water δD also has latitude effect. (2) The soil water δD and precipitation δD in different latitudes have positive correlation (R2 = 0.40, p<0.01). Discussion (1) Soil water δD and precipitation δD have positive linear correlation (R2 = 0.40). It proves that precipitation is the one of main sources of soil water, which is consistent with previous studies. (2) Previous studies illustrate that soil water δD and altitude have negative correlation. (3) The isotope constitution of soil water has correlation with plant cover and soil water evaporation. (4) It is more effective to rebuild paleoenvironment by comparing plant δD and soil water δD. Conclusions (1) The change of soil water δD can record the signal of precipitation, their δD both have negative correlation with latitude. (2) Precipitation is one of main sources of soil water. Precipitation water δD and soil water δD have good linear fitting but there are also some other factors which affect the data. Our study shows that altitude, evaporation and plant cover are the major influence factors, which is consistent with previous study. There are still some other factors are waiting for further research. (3) It is more effective to rebuild paleoenvironment by comparing plant δD and soil water δD. Recommendations and perspectives (1) Our samples were collected in August and September, which belong to rain season (June to September). Consequently, this result shows the relation between precipitation and soil water in rain season in some extent. In addition, it has shortcomings since we lack of the data from June and July. The characteristic of whole rain season is planning to be completed in the future study. (2) In future research, focusing on the comparison of the δD value of leaf wax and the δD value of soil water will help to reducethe error.
Keywords: hydrogen isotope; soil water; precipitation; latitude
水是生态系统和生物存在的最主要的资源,并且是社会经济的战略资源,在半干旱地区土壤水在农作物生长和植被恢复中起着关键作用Fu et al2003。表层土壤水在水文循环中相当于一个重要的蓄水载体,并且是大多数植物主要的水源Ehleringer et al2000。土壤水中的18O和2H已经被用作测量渗透蒸发和混合过程,在数量上估计地下水补充和蒸发率Zimmermann et al1966Barnes and Allison1988Mathieu and Bariac1996Hsieh et al1998Liu et al2015。Zimmermann1966报道了土壤水蒸发对同位素组成的影响。土壤水稳定同位素可以描绘地下水的混合动态Carreon et al2003和土壤水的补充过程和流动机理Barnes and Allison1988Mathieu and Bariac1966Hsieh et al1998。一般来说,雨水进入土壤通过扩散、活塞运动和流动从而渐渐与以前的土壤水混合,在活塞流动下,新的降水将残余的旧的地下水向下推动并与其混合Asano et al2002Gazis and Feng2004。
降水是土壤水和地下水的主要来源,所以不同的土壤水同位素组成很大程度上反映了降水输入的同位素信号Gat1996。在最上层的土壤,这部分土壤水氢同位素组成可以被表面的蒸发作用改变导致水中的氘富集Sachse et al2012。
水是光合作用生命体和其产物的首要氢源。有机物中的氢被保存在沉积物中因此它可以记录光合作用中的水的同位素组成,并且成为研究古水文的媒介Estep and Hoering1980Sternberg1988。高等植物中水的来源主要是土壤水,它主要通过根部在土壤中吸收水分,并在植物内经过各种生化作用产生同位素分馏,合成一系列有机质,包括一些生物标志物Saches et al2012。土壤水是植物中的水的主要来源(Gat2010Saches et al2012),比起大气降水,表层土壤水更直接地与叶蜡氢同位素产生联系。因此,分析表层土壤水和大气降水δD值的关系以及其他因素对表层土壤水δD值的影响是准确重建古降水的重要研究之一,但目前对于这方面的大区域范围的研究报道很少。例如通过对现代植物的调查,Liu and Yang2008,Liu et al2016和Zhang et al2017均发现植物叶蜡δD值与大气降水δD值有正相关关系。这些研究主要分析了降水δD值对叶蜡中δD值的影响,但并没有重点关注土壤水的可能影响。
目前对土壤水和降水关系的研究较多Gat1996Zhang et al2017Bai et al2017土壤水中氢同位素来源于降水但土壤水会不可避免受到陆地上各种环境因素的影响,而植物中的水主要来自土壤水,土壤水是植物的主要氢源,所以土壤水的氢同位素组成影响了对陆地植物叶蜡氢同位素组成变化的理解Estep Hoering1980Sternberg 1988;Gat2010Saches et al2012)。本文通过对中国不同纬度的表层土壤水氢同位素组成的系统调查,探寻降水以及其他因素如纬度对土壤水δD值的影响,目的是为植物叶蜡氢同位素的古环境研究提供机制上的理解。
1   材料与方法
1.1 样品采集
样品采集于2016年9月(雨季时期),从中国南部一直到东北大兴安岭,采集不同类型的表土样品(表层0—5 cm),纬度范围为20°—51°N,每个采样点的坐标均由手持GPS测定。采样点分布如图1所示。为了避免人类活动和自然水体的影响,样品都是在远离人类活动频繁并且远离河流与湖泊的环境采集。土壤样品采集前先去除枯枝落叶层,将半径约10 m内的3个随机表层土壤样品混合后作为一个样品。采集后的土壤样品装入聚乙烯小瓶中。


图1   采样点位置示意图
Fig.1 Location of the sampling sites for soil water
1.2 样品分析
土壤水用冷冻真空蒸馏方法从土壤中分离(West et al,2006):具体步骤如下:(1)将土样放入试管,并用导管与收集试管连接。(2)用盛有液氮的容器从试管外浸没土壤样品将其冷冻,固定土壤水。(3)抽真空,并保持真空状态。(4)移动液氮容器,将其浸没收集试管,土壤水脱离液氮冷冻并用电热棒插入烧杯水浴加热土壤样品。(5)土壤中的水逐渐蒸发流入收集管,并在液氮冷冻下凝固。(6)取下收集管,让其中收集的冰融化,经过过滤用注射器注入2 mL小瓶中,待测。
1.3土壤水的δD值的测定
使用L2130-I isotope water analyzer(Picarro,Sunnyvale,CA,USA)来测定土壤水δD值,测定误差为千分之一。为避免仪器记忆效应的影响,每个样品重复测定六次,取后三次测定的平均δD值。
1.4大气降水的平均δD值
根据采样点的经纬度坐标和海拔高度,大气降水的平均δD值根据在线大气降水计算器 OIPCThe Online Isotopes in Precipitation Calculator计算http://www.waterisotopes.org/。OIPC可以通过对输入的坐标有关的经验统计模型计算得出降水同位素比值,这个数学模型基于全球降水同位素网络站点Bowen and Revenaugh2003Bowen2017。
2   结果与分析
据表1可知:9月降水的平均δD值变化范围为-72‰—-44‰,表层土壤水的δD值变化范围为-118‰—-6‰。由图2可知:9月大气降水的平均δD值与纬度呈明显的负相关关系(n=43,R2 =0.57,p<0.01),表层土壤水δD的值也与纬度呈明显的负相关关系(n=43,R2 =0.73,p<0.01)。在低纬度地区,表层土壤水的δD值偏正于9月降水的平均δD值,在高纬度地区,表层土壤水的δD值偏负于9月降水的平均δD值。由图3可知:9月大气降水的平均δD值与表层土壤水的δD值呈明显的正相关关系(R2 =0.40,p<0.01),但有少量的点偏离趋势线较多。
表1   中国不同地区表层土壤水的δD值以及9月降水的平均δD值
样品编号纬度经度土壤水
-waterδD/‰
9月降水
rain seasonδD/‰
DBPS-135°54'20.615''111°27'09.766''-79.7-40
DBPS-235°54'40.948''111°42'51.888''-80.0-44
DBPS-337°37'57.081''112°20'17.426''-39.3-43
DBPS-438°33'37.754''112°42'41.106''-44.9-44
DBPS-540°15'32.860''113°44'18.915''-42.2-49
DBPS-640°53'40.941''114°45'18.943''-59.3-44
DBPS-741°15'55.536''114°52'34.492''-61.2-49
DBPS-841°46'115°11'-57.0-50
DBPS-942°06'37.461''115°26'54.143''-44.9-50
DBPS-1042°28'44.581''115°49'17.586''-65.6-51
DBPS-1143°06'47.060''117°12'31.750''-41.1-54
DBPS-1243°17'46.830''118°24'11.010''-70.4-50
DBPS-1343°51'07.747''119°33'38.351''-58.0-50
DBPS-1444°21'51.323''120°31'17.606''-53.5-52
DBPS-1544°40'44.557''121°03'21.856''-68.0-52
DBPS-1645°09'28.339''121°34'04.660''-110.3-53
DBPS-1745°46'47.562''121°35'43.021''-93.3-57
DBPS-1846°22'41.080''122°26'07.688''-77.6-58
DBPS-1946°40'02.747''122°56'00.307''-78.0-58
DBPS-2049°31'35.014''119°42'13.877''-60.4-69
DBPS-2149°53'11.993''119°59'41.342''-77.4-71
DBPS-2250°10'47.528''120°09'02.017''-77.4-72
DBPS-2351°48'31.792''121°51'39.918''-117.6-76
DBPS-2451°32'36.326''121°43'33.611''-108.2-76
DBPS-2551°08'53.778''121°17'19.689''-108.0-76
DBPS-2650°54'31.732''121°23'37.586''-100.2-76
DBPS-2750°41'28.459''121°19'53.166''-91.6-74
DBPS-2848°52'59.793''119°47'57.764''-67.2-68
DBPS-2948°19'01.013''119°46'29.509''-63.6-67
DBPS-3047°55'35.837''119°31'16.222''-60.8-67
DBPS-3147°31'31.103''119°25'24.172''-74.3-66
DBPS-3247°19'00.068''119°45'38.564''-77.5-65
DBPS-3346°53'39.875''119°57'46.392''-83.5-67
NFPS-133°09'39.920"110°09'09.55"-14.1-50
NFPS-232°24'04.865"111°20'30.801"-12.1-45
NFPS-331°35'35.329"112°08'18.914"-21.0-46
NFPS-430°04'30.240"111°38'00.400"-13.0-49
NFPS-528°49'25.460"111°30'08.930"-19.6-50
NFPS-628°09'48.55"110°14'44.033"-15.0-53
NFPS-726°50'19.982"109°44'30.837"-10.2-56
NFPS-825°52'05.115"109°43'10.571"-8.2-54
NFPS-921°43'36.282"109°17'34.265"-18.3-42
NFPS-1020°59'16.564"110°01'21.679"-6.1-38


图2   表层土壤水的δD值以及雨季降水的平均δD值与纬度的关系
Fig 2 Relationship between δDsoil-water and latitude, and relationship between average rain season δDprecipitation and latitude


图3   9月降水的平均δD值与表层土壤水的δD值之间的关系
Fig 3 Relationship between average rain season δDprecipitation and δDsoil-water
3   讨论
3.1 表层土壤水δD与雨季降水δD的纬度效应
目前对降水δD值与纬度关系的研究较多Dansgaard1964Liu and Yang2008Gat2010Zhang et al2017,发现降水δD值具有纬度效应,随着纬度的增高而逐渐偏负,但对于大范围内土壤水δD值与纬度关系的研究较少。本研究发现大范围内表层土壤水δD值和9月降水平均δD值都和纬度呈明显的负相关关系,说明表层土壤水与雨季降水的氢同位素组成也具有纬度效应。与前人研究不同的是,本研究在低纬度地区,表层土壤水δD值偏正于9月降水平均δD值在高纬度地区,表层土壤水δD值偏负于9月降水平均δD值。纬度对的氢同位素组成的影响程度明显不同,这其中有环境因素的影响。
3.2 表层土壤水δD值与雨季降水δD值的关系
本研究采样湿润与半湿润地区,根据以前的研究,雨水落在土壤表面时,水通过地表排水沟流动再通过土壤的空隙渗入从而变成土壤水的一部分Gat1996。表层土壤水δD值和9月降水平均δD值具有正相关关系R2 =0.40,表明大气降水是土壤水的主要来源之一,支持过去的研究结果Gat19962010Sachse et al2012。无论从形成的机理还是数据的相关性来看,表层土壤水的主要来源就是降水。但图2中散点图的线性拟合程度一般,说明有其他因素在影响表层土壤水的氢同位素组成。图2和图3说明尽管降水是表层土壤水的主要来源,但有其他因素影响表层土壤水δD值。Jia et al2008在贡嘎山不同海拔高度测定了表层土壤水氢同位素组成并进行了对比,发现表层土壤水的δD值与海拔高度呈负相关关系。此外,土壤水同位素组成还与植被覆盖土壤水蒸发量等因素有关Gat,2010
3.3土壤水的氢同位素组成对古环境重建影响的分析
近年来通过生物标志物的同位素组成与各种环境因素的同位素组成来重建古环境一直是全球环境学家的研究方向Sachse et al2012Lee et al2016Niedermeyer et al2016Feakins et al2017Sachs et al2017。脂质生物标志物的氢同位素是研究古环境和古生态的重要媒介Gat2010Sachse et al2012。水生和陆生植物脂类生物标志物中的氢同位素组成和生长所需的水源中的水氢同位素组成有关Sachse et al2012。有许多研究着重于研究叶蜡中的氢同位素组成与降水的氢同位素组成的关系Liu and Yang2008Liu et al2016Freimuth et al2017Feakins et al2017。Liu and 2008将植物样品按类型分成草本植物和木本植物,并测得叶蜡δD值与降水比较,发现在全球尺度下,降水δD值在叶蜡氢同位素组成中起着决定性作用,并且随着植物类型不同,氢同位素分馏程度也不同。Liu et al2016将植物分为单子叶和双子叶植物测得叶蜡δD并与降水δD进行对比并计算分馏系数,发现单子叶与双子叶植物叶蜡δD与降水δD之间的分馏系数不同。Freimuth et al2017分析了温带树林的叶蜡δD值与降水δD值的关系,发现植物种类和生长过程都会影响植物中的氢同位素分馏。Feakins et al2017发现了安地斯山脉和亚马逊地区树木的叶蜡氢同位素组成和降水具有正相关关系。逐渐完善了降水氢同位素组成与植物叶蜡氢同位素组成联系的研究,但是研究结果都存在着不小的误差,所以关于这方面的研究依然没有定论。过去的研究表明高等植物中的水主要直接来自于土壤中的水,并不是直接来自于降水,尽管有些植物可以利用雾、露水和地下水等其他水源Dawson and Ehleringer1993Dawson 1998。
结合3.1和3.2,降水进入表层土壤水再到植物的过程中受到其他环境因素的影响。如果表层土壤水因为各种环境因素产生同位素分馏,而重建古环境的过程中没有考虑这些可能的影响因素,会造成误差。前人的研究把重点放在探究降水和植物中生物标志物的关系,而降水是进入土壤变成土壤水才能被植物吸收,这个过程中的氢位素组成变化可能影响到植物生物标志物的氢同位素组成。如果将土壤水的氢同位素组成的研究进去,可以为以后用植物中的生物标志物更有效重建古环境打下基础。
样品采集于9月,雨季时期,本研究可以一定程度上表示雨季降水与表层土壤水的关系。6、7、8月没在内也有不足,后续可以完善整个雨季特征。降水同位素数据来自于数学模型,与真实数据相比存在误差,后续研究将收集雨水并进行测样,获得更加准确的数据。
4   结论
通过中国各纬度雨季降水的氢同位素组成和表层土壤水的氢同位素组成得出以下结论
(1)表层土壤水的δD值变化基本能够记录大气降水的δD值变化信号,它们的δD值均与纬度呈负相关的线性关系。(2)表层土壤水主要来源于降水,表层土壤水的δD值与9月降水的平均δD值的线性拟合较好,但是仍有其他因素影响。海拔、蒸发和植被覆盖等是影响土壤同位素组成变化的因素,其他因素有待后续研究。
致谢
感谢地球环境研究所曹蕴宁、王政、曹希进和刘虎在实验过程中给予的帮助。
Asano Y, Uchida T, Ohte N. 2002. Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan [J]. Hydrology, 261: 173-192.
Bai Y, Chen C H, Fang X M, et al. 2017. Altitudinal effect of soil n-alkane δD values on the eastern Tibetan Plateau and their increasing isotopic fractionation with altitude [J]. Science China Earth Sciences, 60(9): 1664–1673.
Barnes C J, Allison G B. 1988. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen [J]. Journal of Hydrology, 100(1/2/3): 143–176.
Bowen G J. 2017. The in , version 3.1 http://www.waterisotopes.org/.
Bowen G J, Revenaugh J. 2003. Interpolating the isotopic composition of modern meteoric precipitation [J]. Water Resources Research, 39(10). DOI:10.1029/2003WR002086.
Carreón-Diazconti C, Nelson S T, Mayo A L, et al. 2003. A mixed groundwater system at Midway, UT: discriminating superimposed local and regional discharge [J]. Journal of Hydrology, 273(1/2/3/4): 119–138.
Dansgaard W. 1964. Stable isotopes in precipitation [J]. Tellus, 16(4): 436–468.
Dawson T E, Ehleringer J R. 1993. Isotopic enrichment of water in the “woody” tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose [J]. Geochimica et Cosmochimica Acta, 57(14): 3487–3492.
Dawson T E. 1998. Fog in the California redwood forest: ecosystem inputs and use by plants [J]. Oecologia, 117(4): 476–485.
Ehleringer J R, Roden J, Dawson T E. 2000. Assessing ecosystem-level water relations through stable isotope ratio analyses [M]// Sala O E, Jackson R B, Mooney H A, et al. Methods in ecosystem science., New York, NY: Springer: 181–198.
Estep M F, Hoering T C. 1980. Biogeochemistry of the stable hydrogen isotopes [J]. Geochimica et Cosmochimica Acta, 44(8): 1197–1206.
Freimuth E J, Diefendorf A F, Lowell T V. 2017. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords [J]. Geochimica et Cosmochimica Acta, 206: 166–183.
Feakins S J, Bentley L P, Salinas N, et al. 2016. Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon [J]. Geochimica et Cosmochimica Acta, 182: 155–172.
Fu B J, Wang J, Chen L D, et al. 2003. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China [J]. Catena, 54(1/2): 197–213.
Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle [J]. Annual Review of Earth and Planetary Sciences, 24(1): 225–262.
Gat J R. 2010. Isotope Hydrology: A Study of the Water Cycle [M]. : 51-65
Gazis C, Feng X H. 2004. A stable isotope study of soil water: evidence for mixing and preferential flow paths [J]. Geoderma, 119(1/2): 97–111.
Hsieh J C C, Chadwick O A, Kelly E F, et al. 1998. Oxygen isotopic composition of soil water: quantifying evaporation and transpiration [J]. Geoderma, 82(1/2/3): 269–293.
Jia G D, Wei K, Chen F J, et al. 2008. Soil n-alkane δD vs. altitude gradients along Mount Gongga, China [J]. Geochimica et Cosmochimica Acta, 72(21): 5165–5174.
Lee H, Feakins S J, Sternberg L D S L. 2016. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana [J]. Geochimica et Cosmochimica Acta, 179: 275–286.
Liu Y H, Liu F D, Xu Z, et al. 2015. Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China [J]. Catena, 126: 201–208.
Liu W G, Yang H. 2008. Multiple controls for the variability of hydrogen isotopic compositions in higher plant n-alkanes from modern ecosystems [J]. Global Change Biology, 14(9): 2166–2177.
Liu J Z, Liu W G, An Z S, et al. 2016. Different hydrogen isotope fractionations during lipid formation in higher plants: implications for paleohydrology reconstruction at a global scale [J]. Scientific Reports, 6: 19711. DOI: 10.1038/srep19711.
Liu W G, Yang H, Wang H Y, et al. 2016. Influence of aquatic plants on the hydrogen isotope composition of sedimentary long-chain n-alkanes in the Lake Qinghai region, Qinghai-Tibet Plateau [J]. Science China Earth Sciences, 59(7): 1368–1377.
Mathieu R, Bariac T. 1996. An isotopic study (2H and 18O) of water movements in clayey soils under a semiarid climate [J]. Water Resources Research, 32(4): 779–789.
Niedermeyer E M, Forrest M, Beckmann B, et al. 2016. The stable hydrogen isotopic composition of sedimentary plant waxes as quantitative proxy for rainfall in the West African Sahel [J]. Geochimica et Cosmochimica Acta, 184: 55–70.
Sachs J P, Maloney A E, Gregersen J. 2017. Effect of light on 2H/1H fractionation in lipids from continuous cultures of the diatom Thalassiosira pseudonana [J]. Geochimica et Cosmochimica Acta, 209: 204–215.
Sachse D, Billault I, Bowen G J, et al. 2012. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms [J]. Annual Review of Earth and Planetary Sciences, 40(1): 221–249.
Sternberg L D S L. 1988. D/H ratios of environmental water recorded by D/H ratios of plant lipids [J]. Nature, 333(6168): 59–61.
West A G, Patrickson S J, Ehleringer J R. 2006. Water extraction times for plant and soil materials used in stable isotope analysis [J]. Rapid Communications in Mass Spectrometry, 20(8): 1317–1321.
Zimmermann U, Münnich K O, Roether W, et al. 1966. Tracers determine movement of soil moisture and evapotranspiration [J]. Science, 152(3720): 346–347.
Zhang X L, Xu B Q, Günther F, et al. 2017. Hydrogen isotope ratios of terrestrial leaf wax n -alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry [J]. Geochimica et Cosmochimica Acta, 211: 10–27.
稿件与作者信息
王驷壮
WANG Sizhuang
刘卫国
LIU Weiguo
liuwg@loess.llqg.ac.cn
出版历史
出版时间: 2019年1月21日 (版本4
参考文献列表中查看
地球环境学报
Journal of Earth Environment