研究论文 网络优先出版 版本 3
下载
泥河湾盆地早更新世早期气候演变
Climate evolution in the Early Pleistocene of the Nihewan Basin
: 2019 - 10 - 28
: 2020 - 03 - 26
: 2020 - 03 - 31
66 0 0
摘要&关键词
摘要:为研究早更新世早期气候演变,以河北省泥河湾盆地为例,在下沙沟剖面磁极性序列基础上,通过63个沉积物样品的磁化率、粒度分析,揭示了早更新世早期(2.200—2.166 Ma)的气候变化与环境演变特征。结果显示:2.200—2.186 Ma(22000—21490 cm),沉积物低频、高频磁化率为全剖面最高,沉积物以砂为主,粉砂和黏土含量较少,气候最为寒冷干燥;2.186—2.171 Ma(21490—20970 cm),沉积物低频磁化率、高频磁化率为全剖面最低,沉积物以粉砂、黏土为主,砂含量较少,气候最为温暖湿润;2.171—2.166 Ma(20970—20749.5 cm),沉积物低频、高频磁化率波动变化明显,砂、粉砂以及黏土含量波动显著,气候变化频繁,时而温暖湿润,时而寒冷干燥。泥河湾盆地早更新早期气候变化频繁,经历了寒冷干燥、温暖湿润和冷暖交替的过程。
关键词:气候演变;早更新世;磁化率;粒度;泥河湾盆地
Abstract & Keywords
Abstract: Background, aim, and scope During the evolution of the earth, the Quaternary is an important period of the geological history. Studying the climate evolution of the Early Pleistocene is crucial to comprehensively understand the Quaternary climate change. During the long geological evolution process, unique sedimentary strata across different periods has been formed in the Nihewan Basin of Hebei Province, and is of great significance for studying the quaternary climate change in northern China. Taking the Nihewan Basin as the study area, this paper discussed the regional climate evolution during the Early Pleistocene. Materials and methods Based on the magnetic polarity sequence of the Xiashagou section, by analyzing the magnetic susceptibility and particle size of 63 sediment samples, the regional climate evolution in the Early Pleistocene were characterized. Results The low- and high-frequency magnetic susceptibility curves of the sediments have relatively consistent changes with large amplitudes. The sediments are generally silt, with quite different average content of sand and clay, and constantly fine grain size of the profile. There is strong correlation between the magnetic susceptibility and grain size of the deposition profile. Discussion The fluctuations of peaks and troughs across magnetic susceptibility curves match well with the distribution of particle size composition. The magnetic susceptibility is negatively correlated with the proportion of fine components in the particles, while positively correlated with that of the coarse components. Accordingly, the climate evolution of the Early Pleistocene in the Nihewan Basin was obtained. During the period of 2.200— 2.186 Ma (22000— 21490 cm), both the low- and high-frequency susceptibility of the sediments are the highest across the whole profile. High content of sand, combined with low silt and clay content in the sediments, indicates the coldest and driest climate of the total study period. On the contrary, during the period of 2.186— 2.171 Ma (21490— 20970 cm), the low- and high-frequency susceptibility of the sediments are the lowest across the whole profile. The sediments are mainly silt and clay, with less sand content, which indicates the warmest and most humid climate. During the 2.171— 2.166 Ma (20970— 20749.5 cm) period, the low- and high-frequency susceptibility of sediments changed frequently across the profile, due to the highly fluctuated content of sand, silt, and clay. This indicates the temporal alterations between two opposite climates: the warm and humid, and the cold and dry climates. Conclusions The Nihewan Basin has frequent climate changes during the Early Pleistocene. It is experienced a process of cold and dry, warm and humid, and alternating cold and warm. Recommendations and perspectives Although this paper provides a review of the climatic evolution during the Early Pleistocene in the Nihewan Basin, it is still having some uncertainties that is urgent to continue to carry out relevant research with precise age control and indicative climatic proxies.
Keywords: climate evolution; Early Pleistocene; magnetic susceptibility; grain size; Nihewan Basin
在地球演化过程中,第四纪是一个非常重要的地质历史时期,时间大约为250万年,在这一时期,自然界发生了一系列的重大变化,比如气候改变、海面升降、人类出现、生物进化等(Sun et al,1998;徐文炘和李杏林,2000;王大伟,2018;Zhu et al,2018)。作为第四纪气候开始发生转变的早更新世,由于太阳活动、地球轨道、下垫面地理条件等因素发生变化,导致全球大气环流发生了剧烈的变化——全球气候由上新世的温暖湿润,进入早更新世的冰期-间冰期旋回。研究早更新世气候演变有利于深入探讨第四纪气候变化,也有利于研究全球气候的变化机理(姚轶锋等,2007;周鑫等,2007;Wang et al,2016)。
泥河湾盆地位于华北平原东部,沉积物的形成对其环境影响剧烈。泥河湾盆地漫长的地质演化过程中,因盆地内存在断陷块体运动,形成了盆地内不同时期特有的沉积地层,发现了丰富的动物化石和旧石器遗迹(韩非,2013),这对于研究我国北方气候环境变化具有重要意义。泥河湾盆地的磁性地层学研究最早开始于20世纪70年代,早期的磁性地层学研究主要是以东谷坨(卫奇等,1985)和小长梁(尤玉柱等,1980)两个旧石器遗址和古泥河湾的沉积历史进行的。近年来,采用磁性地层学方法(Wang et al,2005;邓成龙等,2007;Deng et al,2008;刘平和邓成龙,2011),对陆相湖泊河流沉积物的剩余磁化率和地球磁场信息开展了一系列研究(王心源等,2008;王博等,2011;张俊辉等,2017;冯钰婷等,2018),并在泥河湾盆地沉积物磁化率的环境演变方面取得了重大的突破,这对于泥河湾盆地内古气候演变以及建立泥河湾盆地磁性地层学研究提供了重要的证据。但是,由于沉积物磁化率受多种复杂因素影响,如何详细解释河湖相沉积物的环境演化和磁学性质,一直以来存在分歧(王建等,1996;吉云平,2007;夏凯生等,2007;王张华等,2008;Jiang et al,2017;杜婧等,2018)。为更好地认识华北地区泥河湾盆地的气候演变,本文选取泥河湾盆地下沙沟剖面,通过样品磁化率和粒度的测定与分析,旨在为进一步探讨泥河湾地区早更新世以来的沉积环境变化提供科学依据。
1   研究区概况
泥河湾盆地位于河北省张家口市阳原县境内(40°05′—40°20′N,114°25′—114°44′E),是华北平原和内蒙古高原的晚新生代断陷盆地,总面积约2000 km2,平均海拔1000 m左右(图1)。盆地内沉积了非常厚的上新世末期到晚更新世的河湖相沉积地层,被称为泥河湾层(Barbour,1925;Barbour et al,1926)。该区为典型的温带大陆性季风气候,年平均气温约7—8℃,年平均降水量约360—420 mm(张攀攀,2017)。植被具有暖温带落叶阔叶林向温带半干旱、干旱草原过渡的特点(李泽涛等,2017),盆地内部以半干旱、干旱灌丛草原为主,周围山地以森林、草原为主。


图1   研究区地势简图及采样点位置图
Fig.1 Sketch map of the study area and sampling point location map
2   材料与方法
2.1   样品采集与岩性描述
在区域地理、水文、植被和地质资料收集整理基础上,在泥河湾盆地东部下沙沟地区,进行现代植被考察和野外地层对比,最终确定在发现哺乳动物化石的原下沙沟剖面(40°17′03″N,114°42′57″E)附近未经人类扰动的新剖面(40°16′14″N,114°42′45″E)进行样品的采集工作。从新剖面对应原下沙沟剖面22000 cm深度处开始,按照20 cm间距自下而上进行连续采样,至新剖面对应原下沙沟剖面钙层顶界处结束,最终采样总厚度为2187 cm,采得样品110个,因实验样品较多且复杂,本文仅分析了下部20749.5—22000 cm的63个样品。与此同时,采样过程中根据地层的岩性、粒径、颜色等对新下沙沟剖面进行分层和描述:沉积物主要以黄色、灰黄色粉砂与棕灰色、灰棕色黏土为主,具水平层理,含软体动物化石、炭屑和大量钙板,没有发现明显的沉积间断痕迹,为典型的河湖相沉积(闵隆瑞等,2015)。
2.2   年代-深度尺度
由于本研究采样剖面底部边界对应原下沙沟剖面22000 cm深度处,刘平等(2016)在磁性地层学、沉积学和生物年代学的基础上,认为泥河湾下沙沟剖面年代大致为2.2—1.7 Ma,因此本研究采样剖面的下限年代为2.2 Ma;此外,本研究采样剖面的顶界(19813 cm)对应原下沙沟剖面钙层的顶部,根据Blaauw和Christen建立的原下沙沟剖面的岩性及磁极性序列发现钙层对应于留尼旺正极性亚时(2.15—2.14 Ma)(Blaauw and Christen,2011;王春玥,2018),故本研究采样剖面年代为2.220—2.140 Ma,如图2,进而推算出本文研究剖面(20749.5—22000 cm深度的63个样品)顶部年龄为2.166 Ma,底部年龄为2.200 Ma,即20749.5 cm对应2.166 Ma,22000 cm对应2.200 Ma。


图2   采样剖面与本文研究剖面年代与深度对比
Fig.2 Comparison of the sampling age and depth of this research profile
2.3   磁化率、粒度的测定
沉积物样品频率磁化率采用MS2型双频磁化率仪测定样品的低频(470 Hz)、高频(4700 Hz)磁化率(张攀攀,2017)。为确保测试的精度,低频、高频磁化率均重复测试5次,分别记录低频、高频磁化率,对数据进行处理。
沉积物样品粒度采用Malvern Mastersizer 3000型激光粒度仪测定,测量范围为0—3500 μm,重复测量误差小于2.5%,得到粒度组成数据,取三次结果中间值,对数据进行处理。本文粒径分级根据尤登-温德华氏等比制Φ值粒级标准(窦衍光,2007)并且参照滇池(张远等,2013)湖泊研究,采用如下标准:砂(>63 μm)、粉砂(4—63 μm)以及黏土(<4 μm)。
2.4   磁化率、粒度的指示意义
沉积物磁化率与粒度间关系非常密切。磁化率和粒度组合特征及相关性对区域的气候环境具有一定的指示意义(Yu et al,1990;王建等,1996;殷勇等,2002)。沉积物磁化率可以用来指示湖泊周围水动力条件变化,低频测量时,磁化率反映沉积物的磁性矿物富集程度(杜婧等,2018);高频测量时,粒度小的超顺磁晶体(<0.03 μm)由于磁滞而被阻挡,对高频磁化率不再有贡献,有贡献的只是那些粒径较大的磁颗粒(刘秀铭等,1990;刘大齐等,2018),所以,高频磁化率是按比例低于低频磁化率的,但本文研究结果表明,低频、高频磁化率曲线变化基本一致,剖面低频磁化率明显低于高频磁化率,这与杨小强和李华梅(2002)、熊平生等(2019)研究不一致,磁化率差异的主要因素是沉积位置、沉积时间及地形因素影响,其结果将另文发表。本文仅讨论磁化率与粒度组合响应气候环境的变化,即磁化率较高代表当时水动力条件较弱,环境较为恶劣;而较低的磁化率则表示当时较为湿润的环境条件(Yu et al,1990);相应地,粗粒沉积物指示干旱气候环境,细粒沉积物则指示湿润气候环境,磁化率和粒度组成变化频繁,表明该地区气候多变(张俊辉等,2017)。影响河湖相沉积的因素复杂,但其磁化率和粒度曲线仍然能够在一定程度上反映沉积环境和古气候的变化(杨晓强和李华梅,1999)。刘宇峰等(2015)对苏贝淖湖滨剖面沉积物磁化率与粒度分析显示:沉积物磁化率较高对应较粗的沉积物颗粒,湖区风沙活动强,气候干旱;磁化率低值对应较细的沉积物颗粒,反映湖区环境相对较湿润。前人对苏北盆地、泥河湾盆地、大同盆地、黄土高原和青藏高原等研究中均得出磁化率的高低和粒度组成能够指示区域气候环境的变化情况(熊尚发等,2002;杨小强和李华梅,2002;舒强等,2006;苏志珠等,2015;陈慧等,2018)。
3   结果分析
研究结果表明:沉积物低频、高频磁化率曲线变化较为一致且幅度较大,沉积物总体以粉砂为主,砂和黏土平均含量差别较大,剖面岩性粒度总体较细。根据磁化率测定结果,结合沉积物粒度组成,采取分段方法,由剖面顶部20749.5 cm逐渐向下,依次划分出3个剖面层,从下到上分别命名为带Ⅰ、带Ⅱ、带Ⅲ(图3)。


图3   下沙沟剖面沉积物磁化率变化曲线及粒度变化特征
Fig.3 Magnetic susceptibility change curve and particle size variation characteristics of sediments in Xiashagou section
(1)带Ⅰ:2.200—2.186 Ma,深度22000—21490 cm,本带为剖面底层,共25个样品。
本带低频、高频磁化率曲线变化幅度在三带中最大,呈现两个明显的峰值。从低频磁化率来看,变化范围为27.61×10-8—201.50×10-8 m3/kg,平均值为63.31×10-8 m3/kg;第一个峰值在21890 cm深度处,其值为201.50×10-8 m3/kg,为研究剖面最大值;第二个峰值在21670 cm深度处,低频磁化率为79.82×10-8 m3/kg。从高频磁化率来看,变化范围为26.76×10-8—140.10×10-8 m3/kg,平均值为69.49×10-8 m3/kg;第一个峰值出现在21890 cm深度处,其值为140.10×10-8 m3/kg;第二个峰值出现在21670 cm深度处,其值为113.50×10-8 m3/kg。本带低频、高频磁化率曲线变化剧烈。
本带沉积物平均粒径较粗,粒度组成主要以砂为主,为剖面最大值,平均为43.92%(4.8%—77%);粉砂平均为48.22%(22.37%—78.46%);黏土含量较少,平均为8.06%(0.63%—19.82%);各粒度组成变化显著,均在21890 cm、21670 cm处出现极值,说明沉积物在本带发生改变。
(2)带Ⅱ:2.186—2.171 Ma,深度21490—20950 cm,本带共27个样品。
本带低频、高频磁化率曲线变化稳定,低频、高频磁化率变化范围分别为12.73×10-8—71.02×10-8 m3/kg、9.16×10-8—86.97×10-8 m3/kg,平均值分别为43.16×10-8 m3/kg、52.11×10-8 m3/kg。低频、高频磁化率相对于带Ⅰ明显上升,且曲线变化趋势基本一致。
本带沉积物平均粒径总体最细,粒度组成以粉砂为主,为剖面最大值,平均为63.06%(27.23%—80.45%),黏土变化较明显,平均为9.88%(1.22%—21.52%);砂含量明显减少,为剖面最小值,平均为27.06%(2.29%—71.55%)。本带粉砂、黏土含量与上带相比明显增加,砂含量明显下降,沉积物粒度组成变化显著,但整体以粉砂、黏土为主,推断沉积环境比较稳定。
(3)带Ⅲ:2.171—2.166 Ma,深度20950—20749.5 cm,本带共11个样品。
本带低频、高频磁化率曲线上升幅度最大。根据岩性组合变化,带Ⅲ又可划分为Ⅲ-Ⅰ和Ⅲ-Ⅱ两个亚带:Ⅲ-Ⅰ亚带(2.171—2.169 Ma,深度20950—20852 cm):本亚带岩性为棕灰色黏土与灰黄色粉砂互层,整体上看低频、高频磁化率偏低,曲线变化相较于其他带稳定;低频、高频磁化率变化范围是12.41×10-8—63.68×10-8 m3/kg、15.92×10-8—64.16×10-8 m3/kg,平均值为29.81×10-8 m3/kg、37.58×10-8 m3/kg;相较于带Ⅱ低频、高频磁化率下降。Ⅲ-Ⅱ亚带(2.169—2.166 Ma,深度20852—20749.5 cm):本亚带岩性为黄色细砂与灰黄色粉砂互层,整体上看低频、高频磁化率波动上升,采样深度越浅,波动越剧烈;从低频磁化率来看,变化范围是28.11×10-8—174.40×10-8 m3/kg,平均值为85.6×10-8 m3/kg,在20749.5 cm深度处出现极端高值,为174.40×10-8 m3/kg,20772 cm深度处又出现极端低值,为28.11×10-8 m3/kg;从高频磁化率来看,变化范围是63.56×10-8—71.81×10-8 m3/kg,平均值为67.52×10-8 m3/kg,曲线变化逐渐稳定。
本带沉积物与上带相比平均粒径渐粗,粒度组成主要以砂、粉砂为主,平均为65.76%(25.48%—81.03%)、32.08%(18.71%—43.41%),黏土含量快速减少,为剖面最小值,平均为1.43%(0.26%—4.11%)。
4   泥河湾早更新世早期气候演变
通过分析比较,沉积剖面的磁化率、粒度表现出较好的相关性,磁化率随深度有不同的变化,其值的波峰波谷起伏变化与粒度组成都能很好地对应,磁化率与粒度组成中的细组分呈负相关,与粗组分呈正相关,可以在一定程度上反映出研究区气候环境的变化(刘秀铭等,2001;张永栋,2012),且与本区域或其他区域有一定对比性(图4),据此,以磁化率与粒度组合变化特征分析为基础,得到泥河湾盆地早更新世早期的气候演变,分带如下:
(1)带Ⅰ:2.200—2.186 Ma,深度22000—21490 cm。
沉积物低频、高频磁化率偏高,波动幅度较大,有明显峰值;沉积物岩性为棕色黏土与灰黄色粉砂互层,颗粒物较粗,水动力条件较弱,本带总体上寒冷干燥,气温较低,降水较少,该时期气候属于冷干阶段;粒度分析也显示砂物质在这一时期达到最大值,水动力条件下降,携带能力减弱,环境向冷干方向发展,是剖面环境最为恶劣时期;两个峰值的出现显示了气候的剧烈变化。本研究揭示的冷干的气候特征不仅与前人在该地区的研究结果相似:该时期下沙沟以禾本科、蒿属、松属为优势种,气候较为寒冷干燥(李陈志,2019);对泥河湾盆地的化学风化强度(与气温和降水有关)研究显示该时期植被从典型的亚热带植被经由发达的森林植被转移到草本植物,表明盆地逐渐干旱冷化(Ao et al,2010);大道坡剖面植被变化也表明气候逐渐干旱(袁宝印等,1996)。也与前人在其他地区的研究结果相似:柏道远等(2011)对洞庭湖华田组上段下部ZKC1孔岩心的磁化率和化学风化指数研究表明气候呈现冷干、凉干的状态;Shi et al(1993)对榆社盆地的孢粉分析指出,该地区有山核桃、油松等为代表的落叶阔叶林景观,故该地区早更新世时期比较干冷,与Liu et al(2004)认为冬夏季风的存在使得山西榆社盆地在早更新世较为干燥一致。但泥河湾层洪坡积物三趾马红土的出现,显示了该时期温热干燥的气候条件(夏正楷和刘锡清,1984);袁宝印等(1996)、李月丛等(2018)对泥河湾段(2.20—2.18 Ma)进行磁性测年与植物孢粉分析都显示了该时期温暖湿润的气候特征,郭志永等(2012)对北大西洋U1313站深海沉积物B阶段(2.21—2.15 Ma)的研究显示磁化率偏低,波动幅度小,且该阶段沉积物的粒度组成没有明显的增加或减少,气候波动较小,处于温暖状态。这可能与沉积物的来源有关,需进一步讨论。


图4   泥河湾盆地早更新世早期气候特征与其他区域对比
Fig.4 Early Pleistocene climatic characteristics of Nihewan Basin compared with other regions
(2)带Ⅱ:2.186—2.171 Ma,深度21490—20950 cm。
沉积物低频、高频磁化率和带Ⅰ相比,明显下降,呈现小幅度的高低震荡;和带Ⅰ相比,带Ⅱ的岩性没有变化,平均粒径明显减小,且变化比带Ⅰ和缓,粒度组成以粉砂、黏土为主,该阶段水动力弱于带Ⅰ;本带气候最为温暖湿润,气温较高,降水较多,是整个剖面环境最为优越时期。本研究揭示的暖湿气候特征不仅与前人在该地区的研究结果相似:该时期(2.188—2.175 Ma)沉积物以禾本科、针阔叶植物为主,有机质含量高,气候最为温暖湿润(李陈志,2019);夏正楷和刘锡清(1984)认为下沙沟剖面的大量软体动物化石,如大楔蚌、丽蚌、田螺等,指示了该地区的湿润气候条件;袁宝印等(1996)对泥河湾盆地大道坡坡面的沉积物磁化率和古气候研究,显示该时期呈现温和的气候特征。也与前人在其他地区的研究结果相似:赵宏宇(2013)对共和盆地介形类化石研究显示的气候一致,同时也响应了黄河源区该时期的气候变化(韩建恩,2010);因东亚季风的减弱,陆源沉积物不断减少,珠江口沉积物磁化率整体呈下降趋势(冯钰婷等,2018),而此时泥河湾盆地正好受到东亚季风的影响(Ao et al,2010),磁化率也有所下降,故该时期气候条件较好。但袁胜元等(2011)认为汉江平原肖寺剖面Ⅱ段中有大量植物根系以及铁锈色团块,显示该时期磁化率偏低,气候整体较为干冷;李广坤等(1987)认为河南省平原地区出现云杉、冷杉等植物,角峰、刃脊等冰蚀地貌,证实了当时气候寒冷偏湿;王建等(1996)对太湖WIC孔0—100 cm样品进行磁化率与粒度分析,粉砂、黏土等细粒沉积物中,粒径越小,磁化率反而高,表明细颗粒物质中磁化率的高低不仅与粒级组成有关,还与其某一粒级范围相关,仍需进一步研究。
(3)带Ⅲ:2.171—2.166 Ma,深度20950—20749.5 cm。
该段沉积物低频、高频磁化率偏低,波动变化较大,砂、粉砂以及黏土含量变化显著,该时期气候由前一阶段的温暖湿润转化为波动变化,环境不稳定,有数次波动。本带沉积物岩性有明显变化,沉积物磁化率、粒度也略有差异。沉积物物源不同,其矿物组成也不同,因而影响了沉积物磁化率、粒度(张俊辉等,2017);沉积物粒度以砂、粉砂为主,黏土含量较少,本带气候由带Ⅱ的温暖湿润开始向寒冷、干燥转变,降水较少,水动力条件较差。本研究揭示的时而温暖湿润、时而寒冷干燥的气候特征与前人的研究结果相似:该时期(2.175—2.15 Ma)下沙沟动物群生活环境总体温暖湿润,但内部环境并不稳定,存在小幅度波动(李陈志,2018);温带、亚热带和热带植被的存在,显示该时期气候频繁波动(夏正楷和刘锡清,1984)。但埃塞俄比亚南部奥莫河谷因短暂冷期,气候变冷,这可能由于沉积物物源的不同(Tarasov et al,2013);西藏札达盆地介形类化石的出现,呈现了干旱寒冷的气候变化(朱大岗等,2006);而由于青藏高原的隆升,兰州盆地更新世(2.17—2.10 Ma)气候环境恶劣(颉光普,1999),这是由于区域沉积条件不同,结果有所差异。
5   结论
通过对泥河湾盆地下沙沟剖面早更新世(深度22000—20749.5 cm)沉积物磁化率和粒度分析,该地区早更新世气候变化特征如下:
2.200—2.186 Ma(22000—21490 cm),沉积物低频、高频磁化率为全剖面最高,沉积物以砂为主,粉砂和黏土含量较少,气候最为寒冷干燥;
2.186—2.171 Ma(21490—20950 cm),沉积物低频、高频磁化率为全剖面最低,沉积物以粉砂、黏土为主,砂含量较少,气候最为温暖湿润;
2.171—2.166 Ma(20950—20749.5 cm),沉积物低频、高频磁化率变化明显,砂、粉砂以及黏土含量波动显著,气候变化频繁,时而温暖湿润,时而寒冷干燥。
致谢
柏道远, 李长安, 陈渡平, 等. 2011. 化学风化指数和磁化率对洞庭盆地第四纪古气候变化的响应[J]. 中国地质, 38(3): 779–785. [Bai D Y, Li C A, Chen D P, et al. 2011. Chemical weathering index and magnetic susceptibility of deposits and their responses to the Quaternary climate in Dongting Basin [J]. Geology in China, 38(3): 779–785.]
陈慧, 杨胜利, 成婷, 等. 2018. 青藏高原东部表土磁化率特征与环境意义[J]. 冰川冻土, 40(6): 1187–1194. [Chen H, Yang S L, Cheng T, et al. 2018. The magnetic susceptibility of top soil in the eastern Tibetan Plateau: features and environmental implications [J]. Journal of Glaciology and Geocryology, 40(6): 1187–1194.]
邓成龙, 敖红, 刘彩彩. 2007. 泥河湾盆地飞梁旧石器遗址磁性地层学[C]//中国地球物理学会第二十三届年会论文集. [Deng C L, Ao H, Liu C C. 2007. Magnetic Stratigraphy of Feiliang Paleolithic Site in Nihewan Basin [C]// Proceedings of the 23rd Annual Meeting of the Chinese Geophysical Society.]
窦衍光. 2007. 长江口邻近海域沉积物粒度和元素地球化学特征及其对沉积环境的指示[D]. 青岛: 国家海洋局第一海洋研究所. [Dou Y G. 2007. Characteristics of sediment granularity, element geochemistry and their significance for identifying sedimentary environment in the contiguous sea areas of Changjiang River estuary [D]. Qingdao: The First Institute of Oceanography, SOA.]
杜婧, 鲁瑞洁, 刘小槺, 等. 2018. 青海湖湖东沙地全新世风成沉积物磁化率特征及其环境意义[J]. 海洋地质与第四纪地质, 38(2): 175–184. [Du J, Lu R J, Liu X K, et al. 2018. Magnetic susceptibility of aeolian sediments deposited since Holocene in the East of Qinghai Lake and its environmental implications [J]. Marine Geology & Quaternary Geology, 38(2): 175–184.]
冯钰婷, 彭诗云, 谢辉, 等. 2018. 近8000年来珠江口沉积物磁化率及其气候环境意义[J]. 广东海洋大学学报, 38(3): 49–53. [Feng Y T, Peng S Y, Xie H, et al. 2018. Sediment magnetic susceptibility and its indication to climatic and environmental changes over the last 8000 years in the Pearl River estuary [J]. Journal of Guangdong Ocean University, 38(3): 49–53.]
郭志永. 2012. 北大西洋U1313站深海沉积物记录的早更新世气候变化[D]. 南京: 南京大学. [Guo Z Y. 2012. Early Pleistocene climate changes recorded by deep-sea sediments of site U1313 in the North Atlantic [D]. Nanjing: Nanjing University.]
韩非. 2013. 电子自旋共振(ESR)测年方法在我国早更新世考古遗址年代学研究中的应用探索[J]. 国际地震动态, 43(10): 42–44. [Han F. 2013. Application of Electron Spin Resonance (ESR) dating method in the study of chronology of archaeological sites in the Early Pleistocene in China [J]. Recent Developments in World Seismology, 43(10): 42–44.]
韩建恩. 2010. 黄河源区晚新生代沉积与环境演化研究[D]. 北京: 中国地质科学院. [Han J E. 2010. The sedimentary and environmental evolution on Yellow River source area during Late Cenozoic era [D]. Beijing: Chinese Academy of Geological Sciences.]
吉云平. 2007. 不同类型沉积物中磁化率的解释[D]. 北京: 北京大学.[Ji Y P. 2007. Interpretation of magnetic susceptibility in different sediments [D]. Beijing: Peking University.]
颉光普. 1999. 甘肃兰州盆地更新世气候环境变迁[J]. 微体古生物学报, 16(1): 104–109. [Xie G P. 1999. Pleistocene climatic and environmental change in the Lanzhou basin, Gansu [J]. Acta Micropalaeontologica Sinica, 16(1): 104–109.]
李陈志. 2019. 泥河湾盆地下沙沟动物群生活早期(2.2—2.14 Ma)气候与环境特征[D]. 石家庄: 河北师范大学. [Li C Z. 2019. Climate and environmental characteristics during the early life (2.2—2.14 Ma) of the Xiashagou fauna in the Nihewan Basin, North China [D]. Shijiazhuang: Hebei Normal University.]
李广坤, 李玉信, 刘书丹, 等. 1987. 河南省第四纪气候演变的初步探讨[J]. 河南地质, 5(2): 47-51. [Li G K, Li Y X, Liu S D, et al. 1987. A preliminary study of the Quaternary climate evolution in Henan Province [J]. Henan Geology, 5(2): 47-51.]
李月丛, 丁国强, 王永, 等. 2018. 泥河湾盆地早更新世(2.6—2.1 Ma)植被和气候变化[J]. 第四纪研究, 38(4): 830-841. [Li Y C, Ding G Q, Wang Y, et al. 2018. Early Pleistocene (2.6—2.1 Ma) vegetation and climate changes in the Nihewan Basin [J]. Quaternary Sciences, 38(4): 830-841.]
李泽涛, 李冰, 李月丛, 等. 2017. 泥河湾盆地油房剖面旧石器时代中期到晚期文化过渡的环境背景[J]. 第四纪研究, 37(3): 463-473. [Li Z T, Li B, Li Y C, et al. 2017. The climate-environment background of Youfang site in Nihewan Basin during the transitional period from mid to late paleolithic period [J]. Quaternary Sciences, 37(3): 463-473.]
刘大齐, 李永化, 魏东岚. 2018. 大连市长兴岛地区黄土剖面磁化率特征及古气候意义[J]. 国土与自然资源研究, (3): 51-53. [Liu D Q, Li Y H, Wei D L. 2018. Magnetic susceptibility characteristics and paleoclimate significance of Loess profile in Changxing Island, Dalian City [J]. Territory & Natural Resources Study, (3): 51-53.]
刘平, 邓成龙, 李仕虎, 等. 2016. 泥河湾盆地下沙沟动物群的磁性地层学定年及其对泥河湾动物群的年代制约[J]. 第四纪研究, 36(5): 1176-1190. [Liu P, Deng C L, Li S H, et al. 2016. Magnetstratigraphic dating of the Xiashagou fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China [J]. Quaternary Sciences, 36(5): 1176-1190.]
刘平, 邓成龙. 2011. 泥河湾盆地下沙沟动物群的磁性地层学定年[C]//中国地球物理学会第二十七届年会论文集. [Liu P, Deng C L. 2011. Magnetostraphic dating of the Xiashagou Fauna in the Nihewan Basin, North China [C]// Proceedings of the 27th Annual Meeting of the Chinese Geophysical Society.]
刘秀铭, 安芷生, 强小科, 等. 2001. 甘肃第三系红黏土磁学性质初步研究及古气候意义[J]. 中国科学(D辑), 31(3): 192-205. [Liu X M, An Z S, Qiang X K, et al. 2001. Preliminary study on magnetic properties of the Tertiary red clay in Gansu Province and its paleoclimatic significance [J]. Science in China (Series D), 31(3): 192-205.]
刘秀铭, 刘东生, Heller F, 等. 1990. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究, 10(1): 42-50. [Liu X M, Liu T S, Heller. F, et al. 1990. Frequency-dependent susceptibility of loess and Quaternary paleoclimate [J]. Quaternary Sciences, 10(1): 42-50.]
刘宇峰, 原志华, 孔伟, 等. 2015. 毛乌素沙地北缘苏贝淖湖滨沉积物磁化率与粒度组份的相关性研究[J]. 科学技术与工程, 15(2): 1-7. [Liu Y F, Yuan Z H, Kong W, et al. 2015. Correlation between the content of different grain size and magnetic susceptibility of SBN lakeshore section in northern edge of Muus Desert [J]. Science Technology and Engineering, 15(2): 1-7.]
闵隆瑞, 迟振卿, 王永, 等. 2015. 河北阳原泥河湾盆地郝家台NHA钻孔岩心岩石地层划分及对比[J]. 中国地质, 42(4): 1068-1078.[Min L R, Chi Z Q, Wang Y,et al. 2015. Lithostratigraphic division and correlation of Haojiatai NHA borehole from Nihewan Basin in Yangyuan, Hebei [J]. Geology in China, 42(4): 1068-1078.]
舒强, 李吉均, 赵志军, 等. 2006. 苏北盆地XH-1#钻孔沉积物磁化率与粒度组分相关性变化特征及其意义研究[J]. 沉积学报, 24(2): 276-281. [Shu Q, Li J J, Zhao Z J, et al. 2006. A correlation between magnetic susceptibility and the content of different grain sizes of XH-1# core in North Jiangsu Basin and its significance [J]. Acta Sedimentologica Sinica, 24(2): 276-281.]
苏志珠, 杨宗园, 李晋昌. 2015. 距今220 ka以来大同盆地沉积物磁化率反映的气候变化[J]. 冰川冻土, 37(2): 401-407. [Su Z Z, Yang Z Y, Li J C. 2015. Climate change reflected by the magnetic susceptibility within the deposit sediment in Datong Basin, North China, since 220 ka BP [J]. Journal of Glaciology and Geocryology, 37(2): 401-407.]
王博, 夏敦胜, 余晔, 等. 2011. 环境磁学在监测城市河流沉积物污染中的应用[J]. 环境科学学报, 31(9): 1979-1991. [Wang B, Xia D S, Yu Y, et al. 2011. Use of environmental magnetism to monitor pollution in the river sediment of an urban area [J]. Acta Scientiae Circumstantiae, 31(9): 1979-1991.]
王春玥. 2018. MIS-2早期冀东地区古环境变化特征与古人类活动[D]. 石家庄: 河北师范大学. [Wang C Y. 2018. Environmental changes and human activities during the early MIS-2 period in the northeast part of North China Plain [D]. Shijiazhuang: Hebei Normal University.]
王大伟. 2018. 基于GIS的泥河湾盆地旧石器时代古人类与地理环境的关系研究[D]. 石家庄: 河北师范大学. [Wang D W. 2018. Research on relationship between ancient human and paleogeographical environment in Paleolithic Age, Nihewan Basin based on GIS [D]. Shijiazhuang: Hebei Normal University.]
王建, 刘泽纯, 姜文英, 等. 1996. 磁化率与粒度、矿物的关系及其古环境意义[J]. 地理学报, 51(2): 155-163. [Wang J, Liu Z C, Jiang W Y, et al. 1996. A relationship between susceptibility and grain-size and minerals, and their paleo-environmental implications [J]. Acta Geographica Sinica, 51(2): 155-163.]
王心源, 吴立, 张广胜, 等. 2008. 安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义[J]. 地理科学, 28(4): 548–553. [Wang X Y, Wu L, Zhang G S, et al. 2008. Characteristics and environmental significance of magnetic susceptibility and grain size of lake sediments since Holocene in Chaohu Lake, Anhui Province [J]. Scientia Geographica Sinica, 28(4): 548–553.]
王张华, 张丹, 李晓, 等. 2008. 长江三角洲晚新生代沉积物磁性特征和磁性矿物及其指示意义[J]. 中国地质, 35(4): 670–682. [Wang Z H, Zhang D, Li X, et al. 2008. Magnetic properties and relevant minerals of late Cenozoic sediments in the Yangtze River Delta and their implications [J]. Geology in China, 35(4): 670–682.]
卫奇, 孟浩, 成胜泉. 1985. 泥河湾层中新发现一处旧石器地点[J]. 人类学学报, 4(3): 223–232, 291. [Wei Q, Meng H, Cheng S Q. 1985. New palaeolithic site from the Nihewan (Nihowan) beds [J]. Acta Anthropologica Sinica, 4(3): 223–232, 291.]
夏凯生, 谢世友, 何多兴. 2007. 重庆江北砾岩磁化率变化特征及其古环境意义[J]. 人民长江, 38(2): 123-125. [Xia K S, Xie S Y, He D X. 2007. Variation characteristics of magnetic susceptibility of conglomerate in Jiangbei, Chongqing and its paleoenvironmental significance [J]. Yangtze River, 38(2): 123-125.]
夏正楷, 刘锡清. 1984. 泥河湾层古地理环境的初步认识[J]. 海洋地质与第四纪地质, 4(3): 101-110. [Xia Z K, Liu X Q. 1984. On paleogeography of the Nihewan Basin during the accumulation of Nihewan series [J]. Marine Geology & Quaternary Geology, 4(3): 101-110.]
熊平生, 刘书荣, 郭杨洋. 2019. 湘赣丘陵区红土剖面磁化率分布特征及其环境记录[J]. 物探与化探, 43(4): 912–918. [Xiong P S, Liu S R, Guo Y Y. 2019. Magnetic susceptibility distribution characteristics and environmental records along red clay section in Hunan-Jiangxi hilly area [J]. Geophysical and Geochemical Exploration, 43(4): 912–918.]
熊尚发, 刘东生, 丁仲礼. 2002. 两个冰期-间冰期旋回的黄土记录及其古气候意义 [J]. 地理科学, 22(1): 18-23. [Xiong S F, Liu T S, Ding Z L. 2002. Paleoclimatic records of the loess in the vicinity of Beijing region during the last two glacial-interglacial cycles and its implications [J]. Scientia Geographica Sinica, 22(1): 18–23.]
徐文炘, 李杏林. 2000. 第四纪气候与地质环境演化及人类活动的关系的研究[J]. 矿产与地质, 14(1): 23–29. [Xu W X, Li X L. 2000. Study on the relationship Quaternary climate and development of geological environment and activity of mankind [J]. Mineral Resources and Geology, 14(1): 23–29.]
杨小强, 李华梅. 2002. 泥河湾盆地沉积物粒度组分与磁化率变化相关性研究[J]. 沉积学报, 20(4): 675–679. [Yang X Q, Li H M. 2002. The correlation between the content of the different grain size and magnetic susceptibility in lacustrine sediments, Nihewan Basin [J]. Acta Sedimentologica Sinica, 20(4): 675–679.]
杨晓强, 李华梅. 1999. 泥河湾盆地沉积物磁化率及粒度参数对沉积环境的响应[J]. 沉积学报, 17(S1): 763–768. [Yang X Q, Li H M. 1999. The sediment susceptibility and grain-size profile respond to change of depositional environment in Nihewan basin [J]. Acta Sedimentologica Sinica, 17(S1): 763–768.]
姚轶锋, 叶超, 寇香玉, 等. 2007. 北京天竺晚上新世以来植被演替与气候变迁[J]. 古地理学报, 9(1): 45-58. [Yao Y F, Ye C, Kou X Y, et al. 2007. Vegetation succession and climate changing since the Late Pliocene in Tianzhu region in Beijing [J]. Journal of Palaeogeography, 9(1): 45-58.]
殷勇, 方念乔, 王倩, 等. 2002. 云南中甸纳帕海湖泊沉积物的磁化率及环境意义[J]. 地理科学, 22(4): 413-419. [Yin Y, Fang N Q, Wang Q, et al. 2002. Magnetic susceptibility of lacustrine sediments and its environmental significance: evidence from Napahai Lake, northwestern Yunnan, China [J]. Scientia Geographica Sinica, 22(4): 413-419.]
尤玉柱, 汤英俊, 李毅. 1980. 泥河湾组旧石器的发现[J]. 第四纪研究, 5(1): 1-13. [You Y Z, Tang Y J, Li Y. 1980. Discovery of paleolithic in Nihewan Formation [J]. Quaternary Sciences, 5(1): 1-13.]
袁宝印, 朱日祥, 田文来, 等. 1996. 泥河湾组的时代、地层划分和对比问题[J]. 中国科学(D辑), 26(1): 67-73. [Yuan B Y, Zhu R X, Tian W L, et al. 1996. Age, stratigraphic division and contrast of the Nihewan Formation [J]. Science in China (Series D), 26(1): 67-73.]
袁胜元, 李长安, 张玉芬, 等. 2011. 江汉平原肖寺剖面粒度和磁化率特征及其环境意义[J]. 海洋湖沼通报, (4): 169-176. [Yuan S Y, Li C A, Zhang Y F, et al. 2011. Grain sizes and magnetic susceptibility of the Xiaosi section in the Jianghan Plain and their environmental significance [J]. Transactions of Oceanology and Limnology, (4): 169-176.]
张俊辉, 王彦虎, 姜珊, 等. 2017. 渭河宝鸡市区段河床沉积物磁性特征分析[J]. 干旱区地理, 40(3): 494-503. [Zhang J H, Wang Y H, Jiang S, et al. 2017. Magnetic property analysis of sediments at Baoji Section of Weihe River [J]. Arid Land Geography, 40(3): 494-503.]
张攀攀. 2017. 泥河湾虎头梁剖面孢粉、磁化率、粒度分析及其环境意义[D]. 石家庄: 河北师范大学. [Zhang P P. 2017. Pollen, susceptibility and grading analysis of Hutouliang profile respond to environment changes in Nihewan [D]. Shijiazhuang: Hebei Normal University.]
张永栋. 2012. 北京昌平第四纪沉积物磁化率、色度的特征及其环境意义[D]. 北京: 首都师范大学. [Zhang Y D. 2012. Characteristics of magnetic susceptibility and chromaticity of Quaternary sediments in Changping, Beijing and their environmental significance [D]. Beijing: Capital Normal University.]
张远, 石陶然, 于涛, 等. 2013. 滇池典型湖区沉积物粒径与重金属分布特征[J]. 环境科学研究, 26(4): 370-379. [Zhang Y, Shi T R, Yu T, et al. 2013. Sediment particle size and the distribution of heavy metals in the typical districts of Dianchi Lake [J]. Research of Environmental Sciences, 26(4): 370-379.]
赵宏宇. 2013. 青海共和盆地上新世和早更新世介形类化石与古环境研究[D]. 北京: 中国地质大学. [Zhao H Y. 2013. Ostracoda fossils and palaeoenvironment of the Niocene and Pleistocene in the Gonghe Basin of Qinghai Province [D]. Beijing: China University of Geosciences.]
周鑫, 郭正堂, 彭淑贞, 等. 2007. 西峰剖面午城黄土古风化强度变化与早更新世季风环境演化[J]. 第四纪研究, 27(4): 645-650. [Zhou X, Gou Z T, Peng S Z, et al. 2007. Variations of paleo-weathering intensity of the Wucheng loess formation at Xifeng and the implications on environment changes [J]. Quaternary Sciences, 27(4): 645-650.]
朱大岗, 孟宪刚, 邵兆刚, 等. 2006. 西藏阿里札达盆地早更新世早期沉积及其古气候与古环境变化[J]. 中国地质, 33(6): 1276–1284. [Zhu D G, Meng X G, Shao Z G, et al. 2006. Early Pleistocene deposits and paleoclimatic and paleoenvironmental changes in the Zanda Basin, Ngari area, Tibet [J]. Geology in China, 33(6): 1276–1284.]
Ao H, Deng C L, Dekkers M J, et al. 2010. Pleistocene environmental evolution in the Nihewan Basin and implication for early human colonization of North China [J]. Quaternary International, 223/224: 472–478.
Barbour G B, Licent E, Chardin P T D. 1926. Geological study of deposits of the Sangkanho basin [J]. Bulletin of the Geological Society of China, 5(S1): 263-278.
Barbour G B. 1925. The deposits of the Sang Kan Ho Valley [J]. Bulletin of the Geological Society of China, 4(1): 53-55.
Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process [J]. Bayesian Analysis, 6(3): 457-474.
Deng C L, Zhu R X, Zhang R, et al. 2008. Timing of the Nihewan formation and faunas [J]. Quaternary Research, 69(1): 77-90.
Jiang H C, Zhong N, Li Y H, et al. 2017. A continuous 13.3-ka record of seismogenic dust events in lacustrine sediments in the eastern Tibetan Plateau [J]. Scientific Reports, 7: 15686. DOI: 10.1038/s41598-017-16027-8.
Liu G W, Leopold E B, Liu Y, et al. 2002. Palynological record of Pliocene climate events in North China [J]. Review of Palaeobotany and Palynology, 119(3/4): 335–340.
Shi N, Cao J X , Königsson L K. 1993. Late Cenozoic vegetational history and the Pliocene-Pleistocene boundary in the Yushe Basin, S. E. Shanxi, China [J]. Grana, 32(4/5): 260-271.
Sun D H, An Z S, Shaw J, et al. 1998. Magnetostratigraphy and palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau [J]. Geophysical Journal International, 134(1): 207-212.
Tarasov P E, Andreev A A, Anderson P M, et al. 2013. The biome reconstruction approach as a tool for interpretation of past vegetation and climate changes: application to modern and fossil pollen data from Lake El'gygytgyn, Far East Russian Arctic [J]. Climate of the Past Discussions, 9(3): 3449-3487.
Wang H Q, Deng C L, Zhu R X, et al. 2005. Magnetostratigraphic dating of the Donggutuo and Maliang paleolithic sites in the Nihewan Basin, North China [J]. Quaternary Research, 64(1): 1-11.
Wang X, Wei H T, Taheri M, et al. 2016. Early Pleistocene climate in western arid central Asia inferred from loess-palaeosol sequences [J]. Scientific Reports, 6: 20560. DOI: 10.1038/srep20560.
Yu L Z, Oldfield F, Wu Y S, et al. 1990. Paleoenvironmental implications of magnetic measurements on sediment core from Kunming Basin, Southwest China [J]. Journal of Paleolimnology, 3: 95–111.
Zhu Z, Dennell R, Huang W W, et al. 2018. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago [J]. Nature, 559(7715): 608-612.
稿件与作者信息
陈旭
CHEN Xu
卢韩好
LU Hanhao
唐自豪
TANG Zihao
张晓娟
ZHANG Xiaojuan
彭培好
PENG Peihao
peihaop@163.com
国家自然科学基金项目(41501060)
National Natural Science Foundation of China (41501060)
出版历史
出版时间: 2020年3月31日 (版本3
参考文献列表中查看
地球环境学报
Journal of Earth Environment