研究论文 正式出版 版本 3 Vol 9 (3) : 282-290 2018
下载
复合污染下AM真菌对苎麻吸收重金属的影响
Effects of arbuscular mycorrhizal fungi on heavy metal absorption of ramie under compound pollution
: 2018 - 06 - 05
129 0 0
摘要&关键词
摘要:利用室内盆栽试验研究Cu、Zn、As、Cd、Sb五种重金属复合胁迫下接种丛枝菌根真菌(Arbuscular mycorrhizal fungi,AM真菌)对苎麻侵染率、生物量、地上部磷含量、重金属浓度及转运系数、抗氧化酶系统的影响。研究结果表明:在复合重金属胁迫条件下,AM真菌能够与苎麻形成良好共生关系,显著促进苎麻地上部对磷的吸收,增加苎麻生物量,改变苎麻抗氧化酶系统,同时调节苎麻重金属的吸收与分配。具体来说,AM真菌对苎麻的侵染率为33.7%。与非接种组相比,接种组苎麻地上部Zn和Cd含量分别增加了50.3%和100.0%,地下部Cu和Sb的含量分别增加了30.4%和114.3%,地上部和地下部As的含量分别降低了121.6%和416.4%。与非接种组相比,接种组苎麻中Zn、As和Cd的转运系数分别增加了58.6%、148.1%和49.8%,Sb的转运系数降低了64.1%。接种AM真菌促进苎麻地上部对磷的吸收,磷含量增加了50.4%。接种组苎麻地上部与地下部生物量也较非接种组分别增加了22.2%和24.0%。同时接种AM真菌提高了苎麻体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,分别提高了17.50%、31.70%、6.75%。
关键词:丛枝菌根真菌;复合重金属;苎麻;磷;生物量;抗氧化酶
Abstract & Keywords
Abstract: Back ground, aim and and scope: The compound pollution of heavy metals in farmland caused by mining and transportation is becoming more and more concerned. Bioremediation of contaminated farmland is more friend than physical and chemical remediation. Ramie, as a unique crop in China, has been considered to adsorb the heavy metals in polluted farmland effectively, such as As, Cd, Pb and Sb. Meanwhile, the mycorrhiza formed by AM fungi and ramiecan improve resistance of ramie to heavy metals. The questions discussed in this study include: 1) whether AM fungi and ramie can form mycorrhiza; 2) whether the mycorrhizal fungi play a role in promoting the remediation of heavy contaminated soil. Materials and methods: In this study, the farmland soil around the tailings of Hunan Tin Mine (1 km) was used as the experiment medium. AM fungi and ramie 3 were used as the experiment material, and the aim in this study is to investigate the effects of AM fungi on ramie colonization rate, biomass, contents of phosphorus in shoots, contents of heavy metals, transport coefficient and antioxidant enzyme system. In addition, the established method was used to remediate the contaminated soil induced by heavy metal. Results:The results showed that (1) AM fungi could form mycorrhizal fungi with ramie, and the colonization rate was 33.7%. The AM fungi inoculated with AM fungi could significantly increase the aboveground biomass (22.2%) and underground biomass (24.0%). Compared to the non-inoculated groups, the aboveground contents of phosphorus (50.4%) were significantly increased for the inoculated groups. (3) Contents of Zn and Cd in the shoots of AM fungi were significantly increased by 50.3% and 100.0%, respectively. Additionally, the contents of Cu and Sb in the roots of AM fungi were significantly increased by 30.4% and 114.3%, respectively. However, the inoculation for AM fungi inhibited the absorption of As in ramie, and the contents of As in the aboveground and underground parts of ramie were reduced by 121.6% and 416.4%, respectively. (4) the inoculation for AM fungi significantly increased the transport coefficients of Zn, As and Cd in ramie by 58.6%, 148.1% and 49.8%, respectively. The transport rate of Sb was significantly decreased by 64.1% in ramie. (5) the inoculation for AM fungi significantly increased the activity of SOD (17.47%) and CAT (31.75%) in ramie, while the inoculation for AM fungi had no significant effects on POD activity. Discussion: (1) Inoculation of AM fungi increased ramie biomass and metal tolerance, which may be due to: 1) AM fungi could expand the range of ramie roots and absorption area through their external hyphae, and further improve ramie absorption of P; 2) the hyphae secrete acetic acid, citric acid and other organic acids could activate the soil in the insoluble phosphate to promote the absorption of ramie P and improve the nutritional status of ramie to P and the ramie biomass. Thereby it enhanced the resistance of ramie to heavy metals (2) AM fungi could promote the absorption and transport of Zn and Cd for ramie, so it can remediate compound pollution of heavy metal contaminated soil by plant extraction, and Cu, Sb immobilized in the ramie root may be mycelial "filtration" effect. AM fungi could reduce the absorption of As in the ramie, which may be due to the absorption of P and As through the phosphate transport system into the plant. Moreover there is a competitive relationship for promoting the P absorption and reducing the absorption of As. (3) AM fungi could improve the resistance of ramie to heavy metals by increasing the activity of antioxidant enzymes, the activation of O2- •, H2O2 and other reactive oxygen species on ramie cells under the stress of heavy metal. Conclusions: Under the stress of compound heavy metal, the experimental conclusions showed that: (1) AM fungi could form mycorrhiza with ramie. AM fungi could increase the uptake of P in the upper part of ramie, promote the increase of biomass and improve the tolerance of heavy metals. (2) Inoculation of AM fungi increased the absorption of a variety of heavy metals for ramie, so the combination of AM fungi and ramie could be a new method for the remediation of heavy metal pollution by the combination of plant and microorganism. (3) Inoculation of AM fungi significantly increased the activity of SOD and CAT in the aerial part of ramie and promoted the activity of POD to a certain extent. Recommendations and perspectives: It has been found that the combination of AM fungi and ramie can be used as a bioremediation method to repair the contaminated soil by heavy metals. In addition, the specific mechanism of the combination of AM fungi with ramie on the remediation of contaminated soil remains to be further studied.
Keywords: arbuscular myhorrhizal fungi; compound heavy metal; ramie; phosphorus; biomass; antioxidant enzyme
复合重金属污染是指两种或两种以上重金属元素同时作用所形成的环境污染现象(何勇田和熊先哲,1994)。近年来,随着伴生矿的开采量逐年增加以及大量含重金属的农药的使用造成土壤复合重金属污染状况日益严重,由此引起土壤肥力严重降低、农作物重金属含量超标、产量及品质下降甚至绝产。这对周边人群饮食安全产生严重威胁(林强,2004)。不同重金属之间存在加和、协同、拮抗等作用使复合重金属污染机制比单一重金属污染污染机制更加复杂(曹心德等,2011),因此复合污染越来越受到关注,并逐渐成为环境科学的重要研究方向之一。目前复合重金属污染的修复技术有物理修复、化学修复、物理化学修复和生物修复。物理修复、化学修复、物理化学修复技术具有时效性强、见效快的特点,但普遍存在治理成本较高、修复后易产生重金属再活化等缺点(陈桂荣等,2010)。植物修复相对于物理、化学修复具有成本低、治理效果好的优点(Huang and Jiao,2012),因此在土壤重金属修复领域逐渐受到青睐。近年来,随着植物修复在重金属污染场地的应用,其生长慢、生物量小、修复效率低等缺点渐渐暴露出来。因此急需寻找富集量大的植物和改进措施。
苎麻是我国特产的多年生草本宿根植物,具有生物量大、根系发达、繁殖力旺盛及抗逆性强的特点(曹诣等,2014)。同时它对As(Leung et al,2006)、Cd(Liu et al,2003)、Pb(黄闺等,2013)、Sb(Okkenhaug et al,2011)等单一重金属均具有富集作用。佘玮等(2011)在研究湖南石门、冷水江、浏阳3个矿区的野生苎麻时发现苎麻对Cd、As、Sb等重金属的富集比一般植物大2-338.4倍,且富集系数与转运系数均大于1,因此满足土壤复合重金属污染超富集植物的特征。同时苎麻还是具有大生物量的经济作物,可以作为造纸、建筑材料等原材料(刘瑛等,2003),因此苎麻是理想的应用于土壤复合重金属污染修复的植物材料。
AM真菌是一类广泛存在的土壤真菌,能够与80%以上陆地植物形成共生体(Wang and Shi,2008)。大量研究发现(Chen et al,2004; Madejón et al,2010; Shen et al,2004)AM真菌不仅可以通过菌丝直接参与重金属的吸收,还可以通过改变植物的生理生态等方式间接来改善植物生长状况。从而减轻重金属对植物的毒害作用。同时能够调节植物对重金属的吸收和转运,加快土壤中重金属的植物提取或植物稳定(Miransari,2011)。因此AM真菌与植物形成的菌根使其在重金属污染土壤的修复上优于单一植物修复。
苎麻虽然对多种重金属具有富集作用,但重金属浓度过高会抑制苎麻的生长(赵丹博等,2015),影响苎麻对重金属吸收,从而降低重金属污染土壤的修复效果。而AM真菌通过改善植物营养条件、根系生理生态等方式改善植物生长状况,促进植物生长,在一定程度上缓解重金属对植物的“毒害”。前期对湖南锡矿山重金属污染土壤分析发现AM 真菌与植物的共生关系普遍存在,并能够提高植物对重金属的耐受性。Wei et al(2015)在研究利用植物与微生物联合修复重金属Sb污染土壤时发现AM真菌能够与苎麻形成菌根,苎麻体内的Sb含量与 AM 真菌侵染率呈显著正相关。因此,我们推测:在复合重金属胁迫条件下AM真菌与苎麻能够形成的菌根并可以改善复合苎麻的生长环境及对重金属的吸收和转运,提高苎麻对复合重金属的耐受性。但是现在还没有直接的试验研究AM真菌-苎麻联合对复合重金属修复的作用,因此我们利用温室接种与非接种对比试验,从植物生长、复合重金属吸收与抗氧化酶系统三方面对该过程初步探讨,这有助于我们更好的了解AM真菌—苎麻联合修复的效果及作用,为复合重金属污染土壤修复提供一条新的解决方法。
1   材料与方法
1.1   供试植物
供试植物为湘苎3号,由湖南农业大学苎麻研究所提供,幼苗取回后种植在经高压蒸汽灭菌的干净土壤中,每隔3日喷洒霍兰格营养液以保证苎麻幼苗的正常生长。供试矿区土壤取自于距离湖南锡矿山某尾矿附近约1千米的农田土壤。经测定土壤中的TOC含量为3.64g·kg-1,全氮为0.77 g·kg-1,速效氮为93.20mg·kg-1,速效磷为5.21 mg·kg-1,速效钾为57 mg·kg-1。全Sb为77.08 mg·kg-1,全Cd为12.67 mg·kg-1,全Zn为176.84 mg·kg-1,全As为153.81 mg·kg-1,全Cu为24.81 mg·kg-1,pH为8.36。
1.2   菌根接种剂
摩西球囊霉Glomus mosseae(BGC NM04A)购自北京市农林科学研究院植物营养与资源研究所。接种剂含有寄主植物根段、相应菌根真菌孢子及根外菌丝体的根际土壤。
1.3   试验设计
根据试验要求,试验设计了1个非接种组,1个接种组,每组设置5个重复,共计10盆。试验土壤采用高温蒸汽灭菌2h。将8.5kg土壤装入口径为35cm,底内径为20cm,高为25cm的塑料盆中。准确秤取接种剂100g,用18目塑料筛将接种剂均匀撒在土壤上面,再将剩余1.5kg土壤均匀的覆在接种剂上面。非接种组则加入等量灭菌的过滤液(120℃,0.1MPa,30min)。上述完成后将土壤用去离子水调节到田间持水率的75%,在生长期间内通过称重法,加入去离子水维持盆栽中含水量。将2棵高度25cm左右大小、长势相似的幼苗用10%H2O2淋洗2-3次,去离子水冲洗3-5次后移栽到试验盆中。
试验设置在中国环境科学研究院温室内,室内控制温度在23~28℃左右,保持光照14h,黑暗10h,光照时间不足以60w日光灯来补充,苎麻生长80d后收获。
1.4   样品分析与测定方法
1.4.1   苎麻侵染率测定
侵染率采用醋酸墨水染色法(Vierheilig et al,2005)测定。
1.4.2   苎麻生物量测定
将收获后的苎麻从泥土中连根取出,先用自来水将其洗净,再用去离子水将其洗涤3~5次。最后用陶瓷剪刀将根、茎叶分开,晾干后放入到105℃烘箱中杀青30min,用鼓风干燥箱80℃烘干至恒重,测定根、茎叶的生物量。
1.4.3   苎麻不同部位重金属含量测定
用陶瓷剪刀分别在苎麻上取若干茎叶(地上部)以及根(地下部)。先用自来水、后用去离子水清洗,用滤纸将水吸干后分别编号,并放入冷冻干燥器中冷冻干燥。分别秤取干燥后的根、茎叶0.1 g置于6 mL 混合消解液(HNO3(65%,v):H2O2(30%,v)=5:1)中,150 ℃电热板消解2 h,赶酸至1 mL,冷却后用质量分数为1%的HNO3清洗并转移至25 mL的容量瓶中,定容后过0.45 μm的聚醚撒滤膜,ICP-MS测定重金属Cu、Zn、As、Cd、Sb的浓度,测定的值为3次重复后所取的平均值。部分计算公式如下:
转运系数=苎麻地上部重金属含量(mg·kg-1)/苎麻地下部重金属含量(mg·kg-1
1.4.4   苎麻地上部分全磷的测定
称取经冷冻干燥苎麻茎叶0.5g,置于50mL消煮管中。先滴入少许水湿润样品,然后加8mL硫酸,轻轻摇匀并放置过夜。在管口放一弯颈小漏斗,在消煮炉上经250℃消煮(温度稳定后计时,时间约30min),待H2SO4分解冒出大量白烟后再升高温度至400℃,当溶液呈均匀的棕黑色时取下。稍冷后加10滴H2O2后摇匀,再加热至微沸,消煮约5min,取下稍冷后,重复加入5滴H2O2,再消煮。多次重复直至消煮到溶液呈无色或清亮,继续加热约5-10min,除尽剩余的H2O2,取下冷却至室温。多次用少量水冲洗弯颈漏斗,把冲洗液加入消煮管。将消煮液无损的转移入100mL容量瓶中,定容,摇匀。溶液用无磷滤纸过滤,用紫外分光光度计在波长450nm处测定吸光度。稀释KH2PO4,分浓度梯度做标准液,在450nm处测定吸光度,绘制标准曲线。根据标准曲线及所测数据计算苎麻地上部磷的浓度。
1.4.5   苎麻叶片中抗氧化性酶的测定
取苎麻组织叶片,同1.4.2过程清洗,用滤纸将叶片表面水分吸干,秤取0.3g叶片,在液氮条件下将其磨成粉末,加入3mL提取缓冲液(0.1mol·L-1K2HPO4-KH2PO4,1mmol·L-1EDTA,0.3%Triton X-100,2%PVP)。在冰浴条件下,加入少量石英砂并研磨成匀浆。4℃高速离心(10000r·min-1,20min),取上清液于10mL离心管中,-70℃低温保存。用于测定抗氧化酶活性。采用氮蓝四唑比色法(李合生,2000)测定SOD活性,采用Knörzer et al(1996)文中方法测定过CAT活性,采用愈创木酚法(Chance and Burner,1955)测定POD活性。
1.4.6   数据处理及分析
所有数据采用Excel2010处理进行均值及标准差的计算,并使用统计分析软件SPSS对试验数据进行单因素方差分析,检验各处理平均值之间的差异显著性。所有作图采用Origin9.1处理。
2   结果与分析
2.1   接种AM真菌对苎麻侵染情况
如图1所示:接种AM真菌后,其侵染率为33.7%。




图1   AM真菌侵染苎麻根部显微结构图
Fig.1 Microstructure of AM fungi infect the root of ramie
2.2   接种AM真菌对苎麻生物量和磷的影响
不同处理对苎麻地上部和地下部生物量的影响如图2所示:在复合重金属胁迫下,接种AM真菌显著增加苎麻地上部和地下部生物量(P<0.05),与非接种组相比,分别增加22.2%和24.0%。


图2   接种AM真菌对苎麻地上部和地下部生物量的影响
Fig.2 Effects of AM fungi on the biomass of aboveground and underground parts of ramie
图中不同字母代表各处理间差异性显著(P<0.05)。下同
Different lowercase letters indicate significant different (P<0.05)among different treatments. The same below
不同处理对苎麻地上部磷含量的影响如图3所示:接种AM真菌显著提高苎麻地上部磷含量(P<0.05),与非接种组相比提高50.4%。


图3   接种AM真菌对苎麻地上部P含量的影响
Fig.3 Effects of AM fungi on P content in ramie aboveground
2.2   接种AM真菌对苎麻吸收、转运重金属的影响
不同处理对苎麻地上部重金属含量影响如图4所示:在复合重金属胁迫条件下,接种AM真菌显著提高苎麻地上部中Zn和Cd的含量(P<0.05),与非接种组相比,分别提高50.3%和100.0%,这说明AM真菌促进苎麻地上部对Zn和Cd的吸收;然而接种AM真菌显著降低苎麻地上部As含量(P<0.05),与非接种组相比,降低121.6%,这说明AM真菌抑制苎麻地上部对As的吸收;接种AM真菌对苎麻地上部吸收Cu、Sb无显著影响。


图4   接种AM真菌对苎麻地上部重金属含量的影响
Fig.4 Effects of AM fungi on the content of heavy metals in ramie aboveground
不同处理对苎麻地下部重金属含量的影响如图5所示:在复合重金属胁迫条件下,接种AM真菌显著提高苎麻地下部中Cu、Sb含量(P<0.05),与非接种组相比,分别提高30.4%和114.3%。这说明接种AM真菌促进苎麻地下部对Cu和Sb的吸收,然而接种AM真菌显著降低苎麻地下部As含量(P<0.05),降低416.4%,这说明AM真菌抑制苎麻地下部吸收对As吸收。同时,接种AM真菌对苎麻吸收Zn、Cd无显著影响。


图5   接种AM真菌对苎麻地下部重金属含量的影响
Fig.5 Effects of AM fungi on the content of heavy metals in ramie underground
不同处理对苎麻转运系数的影响如图6所示:在复合重金属污染条件下,接种AM真菌显著增加苎麻中Zn、As和Cd的转运系数(P<0.05),与非接种组相比,分别提高58.6%、148.1%和49.8%,这说明接种AM真菌促进苎麻中Zn、As、Cd由地下部向地上部转运;然而却显著降低苎麻中Sb的转运率(P<0.05),与非接种组相比,降低64.1%,这说明AM真菌抑制苎麻中Sb由地下部向地上部转运;接种AM真菌对苎麻中Cu的转运无显著影响。


图6   接种AM真菌对苎麻转运重金属的影响
Fig.6 Effects of AM fungi on heavy metal transport from ramie
2.3   接种AM真菌对苎麻SOD、CAT、POD活性的影响
苎麻地上部抗氧化系统酶的变化如图7所示:在复合重金属胁迫条件下,接种AM真菌能够提高苎麻地上部SOD、CAT、POD活性。接种组苎麻地上部SOD和CAT活性显著提高了(P<0.05)17.47%和31.75%。而接种AM真菌对苎麻地上部POD活性提高无显著影响。


 


 


图7   接种AM真菌对苎麻地上部SOD、POD、CAT活性的影响
Fig.7 Effects of AM fungi on SOD, CAT and POD activities in ramie of shoots
3   讨论
本研究结果发现:在复合重金属胁迫条件下,AM真菌能够与苎麻形成良好共生关系,其侵染率为33.7%。这与Wei et al(2015a)发现结论相似,其发现在重金属Sb胁迫条件下,AM真菌能够成功侵染苎麻形成菌根,且苎麻体内的Sb含量与 AM 真菌侵染率呈显著正相关关系。本研究结果还发现:接种组苎麻地上部和地下部生物量显著增加,这表明AM真菌能够缓解复合重金属对苎麻的毒害作用。AM真菌促进苎麻生物量增加的重要原因是它能够通过改善植物的磷营养状态,促进植物对磷的吸收(图3)。磷是植物的必需因素之一,磷缺失会严重影响植物的各种生理生化活动。而重金属Cu2+、Cd2+、Zn2+等离子均可与PO43- 、HPO42- 发生反应,使土壤溶液中PO43- 、HPO42- 的有效性降低,造成植物吸P困难(罗巧玉等,2013)。AM真菌不仅能够通过外生菌丝的延伸,扩大植物根系的范围和根的吸收面积,提高植物对P的吸收,还可以通过菌丝分泌乙酸、柠檬酸等有机酸活化土壤中的难溶性磷酸盐(Hodge et al,2010),促进植物对P的吸收,增强植物对P的可利用性。此外,AM真菌能够通过提高根系磷酸酶的分泌,促进土壤中有机磷的分解,转化为能被植物直接吸收利用的无机磷,改善菌根植物磷素营养状况。刘进法等(2008)在研究AM真菌对枳吸收利用磷酸铝的影响结果发现,接种AM真菌能够显著提高根系与菌丝磷酸酶的分泌,促使有机磷酸酯水解为无机态的磷酸,从而提高植物对土壤中 P 元素的吸收,增加枳的干重。李霞等(2014)的结果也表明在复合重金属胁迫条件下,接种AM真菌的植物地上部的P含量显著提高,生物量增加,植物对重金属的耐受性增强。
本研究结果显示:接种AM真菌显著促进苎麻地上部对Zn、Cd的吸收,并显著提高苎麻中Zn、Cd由地下部向地上部的转运,Wang et al(2007)在研究重金属污染场地接种AM真菌对玉米生长的影响发现,接种易误巨胞囊霉(G.decipiens)后,玉米地上部对Zn、Cd的吸收得到显著提高,同时提高了Zn、Cd的转运效率。本研究结果还发现:接种AM真菌显著促进苎麻地下部对Cu、Sb的吸收,并同时抑制两种重金属向地上部转运,这说明接种AM真菌能够将Cu、Sb大量固持在苎麻根部。大量研究认为,AM真菌菌丝对重金属具有“过滤”作用。González-Guerrero et al(2008)利用TEX/SEM-EDAX发现Cu主要积累在菌丝壁的黏液层、细胞壁和菌丝细胞质中。陈志鹏等(2015)研究发现接种AM真菌促进紫花苜蓿地下部对Sb的吸收并抑制Sb向地上部转运。同时,本研究结果也发现接种AM真菌抑制了苎麻对As的吸收,但苎麻中As的转运系数提高。这与Trotta等(2006)研究结果相似。他们研究发现,接种株状球囊霉的植物地上部与地下部As的含量显著降低,但As的转运系数增加。这可能是由于P和As的吸收都是通过磷酸盐转运系统(Wang et al,2002)进入植物体内,存在竞争关系,促进P吸收的同时降低As的吸收。总体来讲,在复合重金属胁迫条件下,菌根化的苎麻能够促进Cu、Zn、Cd、Sb的吸收。
在重金属胁迫条件下,植物被重金属诱导产生大量的O2-• 、H2O2等活性氧(Reactive Oxygen Species,ROS),ROS导致氧化应激的产生,从而损伤细胞。而在抗氧化酶系统中,SOD能够清除O2-•而产生H2O2,CAT和POD可以将H2O2分解,有效减少植物细胞受到的损伤(Scandalios et al,1993)。本研究结果发现:在复合重金属胁迫条件下,接种组抗氧化系统酶中的SOD和CAT、POD活性提高。这与Márquez-García and Córdoba (2010)的结论相似。张旭红等(2008)试验结果也发现,复合重金属胁迫条件下,蚕豆接种摩西球囊霉后,抗氧化酶的活性显著增强。在复合重金属胁迫下,接种AM真菌促使苎麻地上部分的SOD、CAT、POD活性增加,从而能够较好地清除活性氧,降低植物细胞的损伤,提高苎麻对复合重金属的耐性。
本研究旨在通过探究AM真菌-苎麻联合体对复合重金属污染土壤的修复效率,为我国南方土壤复合重金属污染修复寻找一种新的技术方法。试验初步探究发现AM真菌-苎麻联合体对复合重金属污染土壤具有一定的修复作用。但本研究是在环境条件可控的温室条件下从苎麻生物量、地上部P的含量、重金属吸收与转运、苎麻体内抗氧化酶的变化等方面对AM真菌-苎麻联合修复重金属污染土壤进行了初步探究,对于AM真菌-苎麻联合体对复合重金属修复的具体机制有待进一步研究。
4   结论
(1)室内盆栽试验结果表明:在复合重金属胁迫下,AM真菌能够与苎麻形成菌根,并显著提高苎麻地上部对P的吸收,改善了苎麻的生长状况,促进生物量的增加,提高苎麻对重金属的耐受性。
(2)接种AM真菌调节苎麻对多种重金属的吸收状况。因此AM真菌-苎麻联合体可以作为利用微生物-植物联合体修复复合重金属污染的一种新的方法。
(3)接种AM真菌显著增加苎麻地上部分中SOD和CAT的活性,同时对POD的活性也有一定促进作用。
致谢:感谢秦宁博士对试验的指导,感谢陈志鹏在试验样品处理过程中的帮助。
Chance B, Maehly A C, 1955. Assay of catalases and peroxidases[J]. Methods in enzymology, 2: 764-775.
Chen B, Li X, Zhu Y, 2004. Characters of metal adsorption by AM fungal mycellium[J]. Mycosystema, 24(2): 283-291.
GONZonzlezLEZ-Guerrero M, Melville L H, Ferrol N, et al, 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices [J]. Canadian Journal of Microbiology, 54 (2): 103-110.
Hodge A, Helgason T, Fitter A H, 2010. Nutritional ecology of arbuscular mycorrhizal fungi[J]. Fungal Ecology, 3(4): 267-273.
Huang Z B, Jiao H H, 2012. Heavy metal pollution in soil and restoration technology[J]. Chinese Journal of Nature, 34(6): 350-354.
Knörzer O C, Burner J, Boger P, 1996. Alterations in the antioxidative system of suspension‐cultured soybean cells (Glycine max) induced by oxidative stress[J]. Physiologia Plantarum, 97(2): 388-396.
Leung H M, Ye Z H, Wong M H, 2006. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 139(1): 1-8.
Liu F H, Li Z, Liu Q, et al, 2003. Introduction to the wild resources of the genus Boehmeria Jacq. in China[J]. Genetic Resources and Crop Evolution, 50(8): 793-797.
Madejón E, Doronila A I, Sanchez‐Palacios J T, et al, 2010. Arbuscular mycorrhizal fungi (AMF) and biosolids enhance the growth of a native Australian grass on sulphidic gold mine tailings[J]. Restoration Ecology, 18(s1): 175-183.
Márquez-García B, Córdoba F, 2010. Antioxidative system in wild populations of Erica andevalensis[J]. Environmental and experimental botany, 68(1): 58-65.
Miransari M, 2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals[J]. Biotechnology advances, 29(6): 645-653.
Okkenhaug G, Zhu Y G, Luo L, et al, 2011. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 159(10): 2427-2434.
Scandalios J G, 1993. Oxygen stress and superoxide dismutases[J]. Plant physiology, 101(1): 7.
Shen H, Liu Y, Li X, et al, 2004. Influence of arbuscular mycorrhizal fungus (Glomus caledonium) on maize seedlings grown in copper contaminated soil[J]. Plant Nutrition and Fertitizer Science, 11(2): 199-204.
Trotta A, Falaschi P, Cornara L, et al, 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L[J]. Chemosphere, 65(1): 74-81.
Vierheilig H, Schweiger P, Brundrett M, 2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots[J]. Physiologia Plantarum, 125(4): 393-404.
Wang F Y, Lin X G, Yin R, 2007. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil[J]. International Journal of Phytoremediation, 9(4): 345-353.
Wang F Y, Shi Z Y, 2008. Biodiversity of arbuscular mycorrhizal fungi in China: A review[J]. Advances in Environmental Biology, 2(1): 31-39.
Wang J, Zhao F J, Meharg A A, et al, 2002. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation[J]. Plant physiology, 130(3): 1552-1561.
Wei Y, Chen Z P, Wu F C, et al, 2015. Diversity of arbuscular mycorrhizal fungi associated with a Sb accumulator plant, ramie (Boehmeria nivea), in an Active Sb Mining[J]. Journal of microbiology and biotechnology, 25(8): 1205-1215.
曹心德,魏晓欣,代革联,等, 2011. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, (07):1441-1453.[Cao X D, Wei X X, Dai G L, et al, 2011. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils: A review[J]. Chinese Journal of Environmental Engineering, (07):1441-1453.]
曹诣,佘玮,孙敬钊,等, 2014. 苎麻修复重金属污染土壤研究现状[J]. 作物研究, (06):775-779.[Cao Y, Yu W, Sun J Z, et al, 2014. Research status of resistance to heavy metal population of ramie[J], Crop Research, (06):775-779.]
陈桂荣,曾向东,黎巍,等, 2010. 金属矿山土壤重金属污染现状及修复技术展望[J]. 矿产保护与利用,2010,(02):41-44.[Chen G R, Zeng X D, Li W, et al, 2010. Overview on current situation of heavy metal pollution in soil and remediation technology of contaminated soils in metal mines[J]. Conservation and Utilization of Mineral Resources, (02):41-44.]
陈志鹏,魏源,赵冬安,等, 2015. 丛枝菌根真菌对紫花苜蓿锑积累和抗氧化活性的影响[J]. 农业环境科学学报, (06):1053-1059.[CHEN Z P, Wei Y, Zhao D A, et al, 2015. Effect of arbuscular mycorrhizal fungi on uptake and antioxidative responses of Medicago Sativa in antimony polluted soil[J]. Journal of Agro-Environment Science, (06):1053-1059.]
何勇田,熊先哲, 1994. 复合污染研究进展[J]. 环境科学, (06):79-83+96.[He Y, Xiong X Z. 1994. Advance in the study on compounded pollutions[J].Chinese Journal of Environmental Science, (06):79-83+96.]
黄闺,孟桂元,陈跃进,等, 2013. 苎麻对重金属铅耐受性及其修复铅污染土壤潜力研究[J]. 中国农学通报, (20):148-152.[Huang G, Meng G Y, Chen Y J, et al, 2013. Study on Pb tolerance and remediation potential of lead-contaminated soil of ramie[J]. Chinese Agricutural Science Bulletin, (20):148-152.]
李合生. 2000. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 167-169.[Li H S. 2002. Plant physiology and technology[M]. Beijing: Higer Education Press,167-169.]
李霞,彭霞薇,伍松林,等, 2014. 丛枝菌根对翅荚木生长及吸收累积重金属的影响[J]. 环境科学, (08):3142-3148.[Li X, Peng X Y, Wu S L, et al, 2014. Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignisChun seedlings[J]. Environmental Science, (08):3142-3148.]
林强, 2004. 我国的土壤污染现状及其防治对策[J]. 福建水土保持, 16(1):25-28.[Lin Q. 2004. The present situation and the countermeasures to soil pollution in China[J]. Fujian Soil And Water Conservation, 16(1): 25-28. ]
刘进法,夏仁学,王明元,等, 2008. 接种丛枝菌根真菌对枳吸收利用磷酸铝的影响[J]. 应用生态学报, (10):2155-2160.[Liu J F, Xia R X, Wang M Y, et al, 2008. Effects of inoculation with arbuscular mycorrhizal fungi on AlPO4 uptake by Poncirus trifoliate[J]. Chinese Journal of Applied Ecology, (10):2155-2160.]
刘瑛,李选才,陈晓蓉,等, 2003. 麻类作物副产品的综合利用现状[J]. 江西棉花, (01):3-7.[Liu Y, Li X C, Chen X R, et al, 2003. Summarization on utilizable value in by -products of Fibre crops[J]. Jiangxi Cotton. (01):3-7.]
罗巧玉,王晓娟,林双双,等, 2013. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, (13):3898-3906.[Luo Q Y, Wang X J, Lin S S, et al, 2013.Mechnism and application of bioremediation on heavy metal polluted soil using arbuscular mycorrhizal fungi[J].Acta Ecologica Sinica, (13):3898-3906.]
佘玮,揭雨成,邢虎成,等, 2011. 湖南石门、冷水江、浏阳3个矿区的苎麻重金属含量及累积特征[J]. 生态学报, (03):874-881.[She W, Jie Y C, Xing H C, et al, 2011. Heavy metal concentrations and bioaccumulation of ramie(Boehmeria nivea)growing on 3 mining areas in Shimen,Lengshuijiang and Liuyang of Hunan Province[J]. Acta Ecologica Sinica, (03):874-881.]
张旭红,高艳玲,林爱军,等, 2008. 重金属污染土壤接种丛枝菌根真菌对蚕豆毒性的影响[J]. 环境工程学报, (02):274-278.[Zhang X H,Gao Y L, Lin A G, et al, 2008. Effects of arbuscular mycorrhizal fungi colonization on toxicity of soil contaminated by heavy metals to Vicia faba[J]. Chinese Journal of Environmental Engineering, (02):274-278.]
赵丹博,曹诣,佘玮,等, 2015. 镉、砷复合污染对苎麻生长及吸收镉、砷的影响[J]. 中国麻业科学, (04):183-188.[Zhao D B, Cao Y, She W, et al, 2015. Effects of Cd,As stress on growth and Cd,As uptake of ramie[J]. Plant Fiber Sciences in China, (04):183-188.]
稿件与作者信息
周民1, 2
ZHOU Min1, 2
魏源2*
WEI Yuan2*
rbq-wy@163.com
陈海燕2
CHEN Haiyan2
喻文强3
YU Wenqiang3
侯红2
HOU Hong2
吴丰昌2
WU Fengchang2
谭伟强1*
TAN Weiqiang1*
tlong958@163.com
基金项目: 国家自然科学基金(41271338,41303066);科技部科研院所专项(2014EG166135);湖南省重点研发计划(2016NK2008)
The National Natural Science Foundation of China (41271338,41303066); The National Special Environmental Protection Foundation for Technology Exploit of China (2014EG166135); Key Research and Development Plan of Hunan Province (2016NK2008)
出版历史
出版时间: 2018年6月5日 (版本3
参考文献列表中查看
地球环境学报
Journal of Earth Environment