研究论文 正式出版 版本 3 Vol 9 (4) : 348-355 2018
下载
不同含盐量土壤可溶性无机碳及盐基离子的剖面分布特征
Profile Distribution characteristics of Dissolved Inorganic Carbon and Base Cations in Different Salt Content Soil
: 2018 - 07 - 12
108 0 0
摘要&关键词
摘要:为了探究干旱区盐碱土壤可溶性无机碳的动态分布特征,选取内蒙古河套灌区7种不同电导率土壤的0~100 cm剖面,采用临近样地,随机布点的方法,研究该地区土壤可溶性无机碳和盐基离子的剖面分布规律。结果表明:土壤含盐量对可溶性无机碳含量及盐基离子含量具有重要影响,不同含盐量土壤(S1-S7)的可溶性无机碳平均含量随电导率的增加而逐渐降低;随土壤深度的加深呈先减小后增加,表现为浅层0~50 cm含量少,深层50~100 cm含量聚积;可溶性无机碳储量随电导率的增加而逐渐降低。不同含盐量土壤(S1-S7)盐基离子含量随电导率的增加而增加;随土壤深度的加深盐基离子含量逐渐减少,具有较强的表聚性。研究区域土壤盐基离子组成以Ca2+、SO42- 为主,平均含量分别占离子总量的27%和29%;K+、Mg2+含量较少,平均含量分别占离子总量的13%和7%。通过相关性分析,土壤可溶性无机碳含量与EC呈显著负相关(R2=0.83,P<0.05),与pH无显著相关性(R2=0.17,P>0.05),盐基离子平均含量与EC呈显著正相关(R2=0.85,P<0.05),与pH无显著相关性(R2=0.07,P>0.05),表明土壤EC的增加会影响可溶性无机碳和盐基离子的聚积。
关键词:盐碱土壤;可溶性无机碳;盐基离子;剖面分布
Abstract & Keywords
Abstract: Background, aim, and scope The inorganic carbon balance process of CO2(g)-CO2(aq) -(aq)-CaCO3(s) is prevalent in saline-alkali soil, and its dynamic process dominates the inorganic carbon exchange of the ground-gas interface, which also controls the fixation and leaching of the soil inorganic carbon. Soil dissolved inorganic carbon (SDIC) is an active dynamic carbon, which is an important mechanism of soil interception of inorganic carbon. In the current study of soil inorganic carbon, it has been concentrated in non-salt soils like farmland, plains, plateau, deserts soil carbonate content and carbon reserves estimation and different ways of land use on soil inorganic carbon content. There are few studies on inorganic carbon in saline soil, and mainly concentrated in the soil of single salinization in Xinjiang region, but not much in the northern saline-alkali soil inorganic carbon. The study site is located in Hetao Irrigation District of Inner Mongolia, due to its special geographical location and climatic conditions, the soil salinization degree is high and the salinization area is large. In order to explore the saline soils in arid areas with different soil soluble salt content on the dynamic distribution characteristics of inorganic carbon, select 7 kinds of saline soil to study the profile distribution of soil dissolved inorganic carbon and base ions using the method of random points in this area. Materials and methods The soil samples ware collected at a distance of close to the bare ground with different EC by the soil auger in depth from 0 — 100 cm in late August 2016. The soil samples of the same soil layer were collected three times, and the soil samples obtained from the soil samples were fully mixed, and the soil samples were obtained with 42 soil samples in total. The litter on surface of the ground has been removed before sampling. Samples are dried under a natural ventilation indoor, and the grits with the diameter more than 2 mm are removed as well as roots and debris. The treated soil is used to determine soil physicochemical properties, soil salt content, soil dissolved inorganic carbon and soil organic matter. Results (1) The increase of dissolved inorganic carbon content in soil with different salinity is decreasing. As the depth of soil increases, the content of dissolved inorganic carbon decreases first and then increases, which is low in the shallow layer of 0 — 50 cm, and the content of deep 50 — 100 cm is accumulated. (2) The content of soil salinity with different salt content increases with the increase of conductivity. As the depth of soil deepens, the content of salt-base ions decreases gradually, and it has strong table cohesion. The composition of soil salt-base ions in the study area was composed of Ca2+ and mainly, with an average content of 27% and 29% respectively. The content of K+ and Mg2+ is relatively small, with the average content accounting for 13% and 7% of the ions. (3) Correlation analysis showed that soil dissolved inorganic carbon content and EC has significant negative correlation, and no significant correlated to the pH, base ions average content and EC has significantly positively correlation, and no significant correlated to the pH. Discussion (1) It can enhance that leach action of soil under certain condition of salinity, and accelerate the leaching of dissolved inorganic carbon in the soil. The solubility of the saline-alkali soil solution to CO2 is high. In CO2(g)-CO2(aq)-HCO3(aq)-CaCO3(s) inorganic carbon equilibrium, the higher the CO2 concentration, the more the balance will be moved to the right to form more SDIC. Due to the presence of desalt in the near-surface soil, the water will dissolve some dissolved carbonate and bring it underground. The carbonate solution will gradually accumulate in the process of downward migration, and the dissolved carbonate will be trapped in the vertical direction, resulting in the distribution difference in the vertical direction. It was found that that content of 0 — 50 cm soil lay in the 0 — 100 cm cross section was lower than the content of 50 — 100 cm soil lay, means the SDIC mainly distributed in the lower layer of soil. (2) The soil electrical conductivity can reflect the content of the mixed salt of the soil. The higher the EC, the higher the concentration of soluble ions in the soil, the greater the total salt content. The soil in arid and semi-arid regions has high salinity and strong secondary salinization. Due to high temperature and low rainfall, the surface evaporation is very strong, and the large amount of soluble salt ions carried in the upward migration of groundwater will accumulate at the surface of the soil, resulting in a shallow distribution of exchangeable salt-base ions. Conclusions Combining results from dissolved inorganic carbon content and salt-base ions content in different saline-alkali soil can provide information about the effect of soil saline-alkali level is huge. The profile distribution of dissolved inorganic carbon content and salt-base ions in different soil depths shows the existence and migration mechanism of them in soil. Recommendations and perspectives In arid and semi-arid areas of saline soil, inorganic carbon cycle has the potential of carbon sequestration, the dissolution of carbonate-reprecipitation process affects soil carbon fixation and transferring, fully understand the distribution characteristics of the inorganic carbon in saline soil, which is the key to explore the soil environment quality and the aggregation of materials in arid regions.
Keywords: Salinization soil; Soil dissolved inorganic carbon; Base ions; Profile distribution
近年来,由于人类活动导致大气CO2浓度升高,造成了全球变暖、温室效应等一系列环境问题,使得全球碳排放控制成为国际社会关注的焦点。其中,土壤巨大的“碳源”、“碳汇”功能在全球碳循环研究中占重要地位(余健等,2014)。大量研究表明,在美国和中国等多个国家的荒漠区都监测到土壤CO2负通量,量级都在C 100 g·m-2·a-1左右(李彦等,2016)。荒漠区植被稀疏,土壤贫瘠,生命过程微弱,能够产生如此巨大的碳负通量,主要是由于土壤无机碳循环过程。土壤中普遍存在CO2(g) - CO2(aq) - HCO3- (aq) - CaCO3(s) 的无机碳平衡过程,它的动态过程主导着地-气界面的无机碳交换,也控制着土壤无机碳的固定和淋失(潘根兴等,2015)。土壤可溶性无机碳(SDIC)作为比较活跃的动态性碳,向地下的淋溶是土壤截获无机碳的一个重要机制(Sahrawat K L,2003)。目前对土壤无机碳的研究中,多集中在非盐土壤如农田、平原、高原、沙漠等的土壤碳酸盐含量及碳储量的估算和不同土地利用方式对土壤无机碳含量的影响等(牛子儒等,2016;郭洋等,2016;贡璐等,2016;刘淑丽等,2014)。对于盐碱土壤无机碳研究较少,且主要集中在新疆地区单一盐渍化程度土壤上,而对于北方盐碱土壤无机碳涉及不多。内蒙古河套灌区由于其特殊的地理位置及气候条件,土壤盐渍化程度较高,不同程度盐碱化面积大,土壤表层含盐量高(宋泽峰等,2014;杨婷婷等,2005)。因此,本文选取内蒙古河套灌区7种不同含盐量土壤,针对不同土壤深度(0~100 cm)中的可溶性无机碳(SDIC)含量和盐基离子的剖面分布,研究其在不同含盐量盐碱土壤中的存在形态及剖面分布特征,分析土壤理化条件对盐基离子和无机碳影响,这将有利于解释土壤可溶性无机碳和盐基离子在土壤中的动态运移机制和进一步探究盐碱土壤物质、能量和信息流动与转换的机理,是探究干旱区土壤环境质量与物质汇集作用的关键。
1   材料与方法
1.1   研究区概况
供试土壤采于内蒙古巴彦淖尔市乌拉特前旗,地处黄河北岸,河套平原东端。地理坐标为东经108°11’~109°54’,北纬40°28’~41°16’,总面积7476平方公里,其中轻度盐化面积占52.83%,中度盐化面积占31.94%,重度盐化面积占15.23 %(李新等,2016)。该地属于中温带大陆性季风气候,日照充足,是中国光能资源最丰富的地区之一,热量丰富,昼夜温差大,四季分明,雨水集中,雨量多集中于夏季的7、8月份,雨热同期,年平均气温为3.5~7.2 ℃,年降水量在200~250 mm之间,主要集中在6~9月份,占全年降水量的78.9%,年蒸发量在1900~2300 mm之间。最高极端气温38.8 ℃,最低极端气温-36.5 ℃。
1.2样品采集
试验于2016年8月末选取不同电导率盐碱土壤S1,S2,S3,S4,S5,S6和S7作为7个研究样地(表1)。为避免地形、土壤特性等因素影响,试验区域按照临近原则布设样地,选择相对平坦并且相邻近的裸地。每个样地面积10 m×10 m,每个样地设置3次重复。采用随机布点的方法,利用土钻在每个样地距地表0~10 cm、10~20 cm、20~30 cm、30~50 cm、50~70 cm、70~100 cm分6层取样。将采集的土样中可见的植物残体(如根、茎、叶)和土壤动物去除,装于无菌聚乙烯自封袋中。经自然风干后,研磨,过2 mm筛,用于土壤理化特性、土壤盐分含量、土壤可溶性无机碳和土壤有机质的测定。
1.3   样品测定
1.3.1   土壤理化性质测定
土壤pH以水土比为1:1,使用土壤pH计测定;土壤电导率(EC)以水土比为1:1,使用Field scout土壤便携式电导仪测定;土壤容重测定使用环刀法;土壤有机碳(SOC)测定用重铬酸钾-外加热法;土壤可溶性无机碳(SDIC)测定运用双指示剂中和滴定法;土壤全氮(TN)使用凯氏定氮法测定;土壤盐分:硫酸根离子测定用EDTA容量法;钙、镁离子测定用EDTA容量法;钾离子测定用火焰光度法。理化特性具体测定方法参照《土壤农化分析(第三版)》(鲍士旦,2000)进行。试验土壤样地基本情况见表1.
表1   Field observation items, method and time in Mu Us Sandy Land
土壤序号地理位置电导率(EC)
/mS·cm-1
pH总氮(TN)
/g·kg-1
有机碳(SOC)
/g·kg-1
容重(ρb)
/g·cm-3
S1108°39’25’’E; 40°50’11’’N1.698.630.160.391.35
S2108°38’59’’E; 40°50’9’’N5.988.310.140.461.60
S3108°39’24’’E; 40°50’11’’N7.008.150.180.481.35
S4108°39’32’’E; 40°50’5’’N10.158.230.110.291.60
S5108°38’58’’E; 40°50’9’’N16.088.630.140.241.60
S6108°38’34’’E; 40°51’19’’N34.748.560.100.231.60
S7108°38’28’’E;40°51’24’’N70.378.070.260.331.53
1.3.2   数据处理与分析
采用OriginPro8.5和Excel 2010软件进行数据处理和制图,SPSS17.0统计软件进行方差分析(ANOVA)、T检验等数据统计分析。可溶性无机碳是测得的HCO3- 含量和CO32- 含量相加得到的。
2结果与分析
2.1   不同含盐量土壤可溶性无机碳含量及储量剖面分布
由图1可知,土壤含盐量对于可溶性无机碳(SDIC)含量具有重要影响。电导率最小的S1土壤(EC=1.69 mS·cm-1)SDIC平均含量最高,为0.9465 g·kg-1,S2为0.3285 g·kg-1,S3为0.2585 g·kg-1,S4为0.2119 g·kg-1,S5为0.1527 g·kg-1,S6为0.1488 g·kg-1,S7为0.1432 g·kg-1。整体上SDIC平均含量表现为:S1 > S2 > S3 > S4 > S5 > S6 > S7,随着电导率逐渐增大,土壤可溶性无机碳平均含量逐渐减小。
不同土层深度可溶性无机碳(SDIC)含量也存在差异(图1)。在0~100 cm土壤剖面中,随着土壤深度的加深SDIC含量呈先减小后增加的变化趋势。0~50 cm土壤可溶性无机碳含量显著低于(P<0.01)50~100 cm 土壤可溶性无机碳含量。S1土壤 0~50 cm SDIC平均含量为0.8633 g·kg-1,50~100 cm的平均含量为1.1130 g·kg-1,增加了29%;S2、S3、S4、S5、S6、S7分别增加了28%、1%、1%、27%、22%和15% 。


图1   不同含盐量土壤可溶性无机碳含量剖面分布
Fig.1 Schematic diagram of instruments installation locations in the test site of Mu Us Sandy Land
注:图中S1、S2、S3、S4、S5、S6、S7分别为不同含盐量土壤
不同小写字母表示不同土壤不同土层深度间差异显著(P<0.05)
Note: S1,S2, S3, S4, S5, S6 and S7 are respectively soil with different salt contents
Different lower case letters indicate significant differences between different soil depths(P<0.05)
由图2可知,土壤含盐量对于可溶性无机碳储量存在重要影响,电导率最小的S1土壤可溶性无机碳储量最高,为11.9652 kg,S2为5.3914 kg,S3为3.5113 kg,S4为3.4195 kg,S5为2.4161 kg,S6为2.4586 kg,S7为 2.2980 kg。土壤电导率越大,可溶性无机碳储量越小,整体上与可溶性无机碳含量变化一致。


图2   土壤可溶性无机碳储量随不同含盐量的变化趋势
Fig.2 土壤可溶性无机碳储量随不同含盐量的变化趋势
注:不同小写字母表示不同盐含量土壤可溶性无机碳储量差异显著(P<0.05)Note: Different lower case letters indicate significant differences in soil dissolved inorganic carbon storage with different salt contents (P<0.05)
2.2   不同含盐量土壤盐基离子剖面分布
由图3 可知,土壤含盐量对于盐基离子含量的影响显著。电导率最大的S7土壤总含盐量最高,为15.65%,其中钙离子总量为4.26%,钾离子总量为2.13%,镁离子总量为1.21%,硫酸根离子总量为8.05%。电导率最小的S1土壤总含盐量最低,为3.62%,其中钙离子总量为1.87%,钾离子总量为0.88%,镁离子总量为0.53%,硫酸根离子总量为0.34%。电导率大的土壤盐基离子总量高,电导率小的土壤盐基离子总量低。
不同土壤深度盐基离子含量也存在差异(图3)。在0~100 cm土壤剖面内,盐基离子含量由浅至深逐渐减少。土壤交换性Ca2+、K+、Mg2+和SO42- 主要集中分布在0~30 cm表层,其含量分别占全剖面的60%、68%、64%和76%,表现为较强的表聚性。土壤盐基离子组成以Ca2+、SO42- 为主,平均含量分别占离子总量的27%和29%;K+、Mg2+含量少,平均含量分别占离子总量的13%和7%。


图3   春玉米试验田模拟值与实测值
Fig.3 Profile distribution of soil salinity
注*表示土壤之间盐基离子差异显著(*表示P<0.1; **表示P<0.05; ***表示P<0.01)Note: * represents a significant difference in salt-based ions between soils (* represents P<0.1; ** represents P<0.05; *** represents P<0.01)
2.3   土壤可溶性无机碳、土壤盐基离子与土壤理化性质的相关性分析
土壤pH和电导率EC是影响盐碱土壤无机碳和盐基离子含量的重要因素,由图4可知,不同含盐量土壤的可溶性无机碳平均含量随EC增加呈指数减少(R2=0.83,p<0.05)(图4a),随pH的增加而增加,但趋势不显著(R2=0.17,p>0.05)(图4c);盐基离子平均含量随EC增加呈线性增加(R2=0.85,p<0.05)(图4b),随pH的增加而减少,变化趋势不显著(R2=0.07,p>0.05)(图4d)。


图4   土壤可溶性无机碳、土壤盐基离子与土壤理化性质的相关性分析
Fig.4 Correlation analysis of soil physical and chemical properties with Soil dissolved inorganic carbon, soil salt ions
3   讨论
3.1   土壤可溶性无机碳与土壤含盐量的关系及其剖面分布特征
本研究结果表明,不同含盐量土壤(S1-S7)随着电导率的逐渐增大,其可溶性无机碳含量逐渐减小,表现为S1 > S2 > S3 > S4 > S5 > S6 > S7。在一定土壤盐分条件下,盐分会加强土壤淋溶作用,加快土壤中可溶性无机碳淋失(王银山等,2009)。盐碱土壤溶液对CO2的溶解度很高,在CO2(g) - CO2(aq) - HCO3- (aq) - CaCO3(s) 无机碳平衡中,CO2浓度越高,越会促进平衡向右移动,形成更多的SDIC;相反,土壤中盐离子越多,会抑制平衡反应的向右进行,故形成的无机碳也相应变少。通过研究土壤可溶性无机碳平均含量与EC、pH之间的相关性(图4),可以看出土壤可溶性无机碳平均含量与EC呈显著负相关(R2=0.83,p<0.05),表明土壤EC的增加,会影响可溶性无机碳的聚积,即土壤含盐量在一定程度上会影响可溶性无机碳含量的变化(刘丽娟,2013)。由于本研究中7种供试土壤pH值相近,变化范围小,故土壤可溶性无机碳与pH值之间的相关性不显著(R2=0.17,p>0.05)。
不同土壤深度可溶性无机碳含量变化呈先减小后增加,在0~100 cm剖面内表现为0~50 cm 土层含量低于50~100 cm土层含量,即SDIC主要分布在土壤下层。由于表层土距离土壤母质较远,其无机碳主要是靠大气运动带来的碳酸盐,无机碳成分复杂且含量较低,而深层土壤接近土壤母质层,钙质丰富,故可溶性无机碳含量较表层高(潘根兴,1999)。而且近表层土壤存在向下脱盐现象,水分会溶解部分可溶性碳酸盐并带入地下,碳酸盐溶液在向下运移的过程中会逐渐淀积,可溶性碳酸盐也会被逐级截留,就会导致垂直方向上的分布差异(邓彩云,2017)。有研究指出,浅层地下水位是引起无机碳含量在垂直分布上有差异的主要因素,地下水较浅容易引起土壤次生盐渍化的发生(王玉刚,2013)。河套灌区在地质构造上处于包头-吉兰泰断陷盆地,水资源主要以国境的黄河水为主,地下水以潜水为主,埋深1~2 m,地下水位较浅(张雁平等,2008)。由于HCO3- 、CO32- 本身易溶于水,性质活泼,极易随土壤水分向下运移发生淋溶,而土壤水最终会与地下水汇聚,因此会积累大量的可溶性无机碳于土壤深层。
3.2   土壤盐基离子与土壤含盐量的关系及其剖面分布特征
本研究结果表明,不同含盐量土壤(S1-S7)中电导率大的土壤盐基离子含量高,电导率小的土壤盐基离子含量低。通过研究土壤盐基离子平均含量与EC、pH之间的相关性(图4),可以看出土壤盐基离子平均含量与EC呈显著正相关(R2=0.85,p<0.05)。土壤电导率可以反映出土壤混合盐的含量,EC越高,即土壤所含可溶性离子浓度越高,总盐量越大。土壤电导率能够反映出土壤的盐分条件,不同的土壤盐分条件会影响交换性离子的数量(Zamanian et al,2016)。土壤盐基离子平均含量与pH值之间的相关性不显著(R2=0.07,p>0.05)。
不同土壤深度各盐基离子含量由浅至深逐渐减少,表现为较强的表聚性。土壤盐基离子的含量及分布容易受到胶体表面的吸附和交换特性、盐基离子性质及离子间作用、生物物质循环以及淋溶作用的影响(蔺娟等,2007)。干旱半干旱地区的土壤含盐量高,次生盐渍化现象严重,高温少雨,地表蒸发作用很强,地下水的频繁上升带动土壤盐分的上移,随着表面水分的蒸发,地下水向上运移过程中携带的大量可溶性盐离子就会在土壤表层聚集,导致交换性盐基离子分布较浅(郭全恩,2010)。土壤水分对盐分离子影响较大,土壤水分的运移会造成盐分在垂直方向上的分布差异,影响盐分聚积(许媛媛等,2012;马占臣等,2014)。而且因各种离子的迁移能力不同,土壤脱盐过程中各离子的相对含量也会有所区别(Esteban G等,2001)。本研究中土壤盐基离子含量SO42- > Ca2+ > K+ > Mg2+,在剖面上的分布由浅至深均表现出较强的表聚性。
4   结论
(1)不同含盐量土壤(S1-S7)随电导率的增加其可溶性无机碳平均含量逐渐降低;随土壤深度的加深可溶性无机碳含量先减小后增加,表现为浅层0~50 cm含量少,深层50~100 cm含量聚积。不同含盐量土壤可溶性无机碳储量随电导率的增加而降低。
(2)不同含盐量土壤(S1-S7)盐基离子含量随电导率的增加而增加;随土壤深度的加深盐基离子含量逐渐减少,具有较强的表聚性。研究区域土壤盐基离子组成以Ca2+、SO42- 为主,K+、Mg2+次之。
(3)相关性分析表明,土壤可溶性无机碳含量与EC呈显著负相关(R2=0.83,P<0.05),与pH无显著相关性(R2=0.17,P>0.05);盐基离子平均含量与EC呈显著正相关(R2=0.85,P<0.05),与pH无显著相关性(R2=0.07,P>0.05)。
余健, 房莉, 卞正富, 等. 2014. 土壤碳库构成研究进展[J]. 生态学报, 34(17):4829-4838.[Yu J, Fang L, Bian Z F, et al. 2014. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 34(17):4829-4838.]
李彦, 王玉刚, 唐立松. 2016. 重新被“激活”的土壤无机碳研究[J]. 土壤学报, 53(4):845-849.[Li Y, Wang Y G, Tang L S. 2016. The effort to Re-Activate the inorganic carbon in soil[J]. Acta Pedologica Sinica, 53(4):845-849.]
潘根兴, 程琨, 陆海飞 ,等. 2015. 可持续土壤管理:土壤学服务社会发展的挑战[J]. 中国农业科学, 48(23):4607-4620.[Pan G X, Cheng K, Lu H F, et al. 2015. Sustainable soil management: An emerging soil science challenge for global develoment[J] Scientia Agricultura Sinica, 48(23):4607-4620.]
Sahrawat K L. 2003. Importance of inorganic carbon in sequestering carbon in soils of the dry regions[J]. Current Science, 84(7):864-865.
牛子儒, 王玉刚, 邓彩云, 等. 2016. 耕作对干旱区表层土壤无机碳的影响[J]. 生态学杂志, 35(10):2714-2721.[Niu Y R, Wang Y G, Deng C Y, et al. 2016. Effect of tillage on inorganic carbon in upper soil profiles in arid zone[J]. Chinese Journal of Ecology, 35(10):2714-2721.]
郭洋, 李香兰, 王秀君, 等. 2016. 干旱半干旱区农田土壤碳垂直剖面分布特征研究[J]. 土壤学报, 53(6): 1433-1443.[Guo Y, Li X L, Wang X J, et al. 2016. Profile distribution of soil inorganic and organic carbon in farmland in arid and semi-arid areas of China[J]. Acta Pedologica Sinica 53(6): 1433-1443.]
贡璐, 朱美玲, 刘曾媛, 等. 2016. 塔里木盆地南缘典型绿洲土壤有机碳、无机碳与环境因子的相关性[J]. 环境科学, 37(4):1516-1522.[Gong L, Zhu M L, Liu Z Y, et al. 2016. Correlation among soil organic carbon, soil inorganic carbon and the environmental factors in typical oases in the southern edge of tarim basin[J]. Environmental Science, 37(4):1516-1522.]
刘淑丽, 林丽, 郭小伟, 等. 2014. 青海省高寒草地土壤无机碳储量空间分异特征[J]. 生态学报, 34(20): 5953-5961.[Liu S L, Lin L, Guo X W, et al. 2014. The variation feature of soil inorganic carbon storage in alpine grassland in Qinghai province[J]. Acta Ecologica Sinica, 34(20): 5953-5961.]
宋泽峰, 段亚敏, 栾文楼, 等. 2014. 河北平原表层土壤有机碳和无机碳的分布及碳储量估算[J]. 干旱区资源与环境, 28(5):97-102.[Song Z F, Duan Y M, Luan W L, et al. 2014. Spatial distribution of organic and inorganic carbon and estimation of soil carbon storage in surface soil of Hebei Plain, China[J]. Journal of Arid Land Resources and Environment, 28(5):97-102.]
杨婷婷, 胡春元, 丁国栋, 等. 2005. 内蒙古河套灌区盐碱土肉眼识别标志及造林技术[J]. 内蒙古农业大学学报(自然科学版), 26(3):44-49.[Yang T T, Hu C Y, Ding G D, et al. 2005. Types and recognizing system of saline-alkali land in Hetao irrigation district[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 26(3):44-49.]
李新, 焦燕, 代钢, 等. 2016. 内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J]. 中国环境科学, 36(1):249-260.[Li X, Jiao Y, Dai G, et al. 2016. Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao Area of Inner Mongolia[J]. China Environmental Science, 36(1):249-260.]
王银山, 张燕, 谢辉, 等. 2009. 艾比湖湿地不同盐碱环境土壤微生物群落特征分析[J]. 干旱区资源与环境, 23(5):133-137.[Wang Y S, Zhang Y, Xie H, et al. 2009. The analysis of characteristics of the soil microorganisms in different saline and alkali environment in Aibil lake wetland[J]. Journal of Arid Land Resources and Environment, 23(5):133-137.]
刘丽娟, 王玉刚, 李小玉. 2013. 干旱区绿洲土壤可溶性无机碳的空间分布特征[J]. 生态学杂志, 32(10): 2539-2544.[Liu L J, Wang Y G, Li X Y. 2013. Spatial distribution pattern of soil dissolved inorganic carbon in an arid oasis[J]. Chinese Journal of Ecology, 32(10): 2539-2544.]
潘根兴. 1999. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J]. 南京农业大学学报, 22(1):51-57.[Pan G X. 1999. Pedogenic carbonates in aridic soils of China and the significance in terrestrial carbon transfer[J]. Journal of Nanjing Agricultural University(Social Sciences Edition), 22(1):51-57.]
邓彩云, 王玉刚, 牛子儒, 等. 2017. 开垦年限对干旱区土壤理化性质及剖面无机碳的影响[J].水土保持学报, 31(1):254-259.[Deng C Y, Wang Y G, Niu Z R, et al. 2017. Effect of reclamation age on soil physicochemical properties and inorganic carbon in arid area[J]. Journal of Soil and Water Conservation, 31(1):254-259.]
王玉刚, 王忠媛, 李彦. 2013. 干旱区盐碱土剖面无机碳组分分布特征[J]. 干旱区地理, 36(4):631-636.[Wang Y G, Wang Z Y, Li Y. 2013. Distribution of inorganic carbon compositoin in saline-alkali soil profiles[J]. Arid Land Geography, 36(4):631-636.]
张雁平, 胡春元, 董智, 等. 2008. 河套灌区盐碱地造林树种选择的研究[J]. 内蒙古林业科技, 34(2):25- 27.[Zhang Y P, Hu C Y, Dong Z, et al. 2008. Choice of forestation tree species in saline alkali land in Hetao Irrigation[J]. Journal of Inner Mongolia Forestry Science and Technology, 34(2):25- 27.]
Zamanian K., Pustovoytov K., Kuzyakov Y. 2016. Cation exchange retards shell carbonate recrystallization: consequences for dating and paleoenvironmental reconstructions[J]. Catena, 142:134-138.
蔺娟, 艾尼瓦尔.买买提, 地里拜尔.苏力坦. 2007. 新疆盐渍化区土壤盐分离子的空间变异特征[J]. 水土保持研究, 14(6):189-192.[Lin J, Ai N W E, Di L B E. 2007. Spatial variability of soil saltions in Xinjiang salinization region[J]. Research of Soil and Water Conservation, 14(6):184-187.]
郭全恩. 2010. 土壤盐分离子迁移及其分异规律对环境因素的响应机制[D].西北农林科技大学,[Guo Q E.2010. The response mechanism of soil salt ions transfer and diversity rule to environment factor[D]. Journal of northwest agricultural science and technology university.]
许媛媛, 塔西甫拉提·特依拜, 等. 2012. 不同季节渭干河-库车河典型三角洲绿洲土壤盐分离子空间变异特征研究[J]. 安徽农业科学, 40(25):12568-12571.[Xu Y Y, Ta X P L T, et al. 2012. Spatial variability of salt ions in soils in oasis of delta of Weigan River-Kuqa River in different seasons[J]. Journal of Anhui Agricultural Sciences, 40(25):12568-12571.]
马占臣. 2014. 不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征[J]. 农业与技术, (1):4-5.[Ma Z C.The salt ion distribution characteristics of soil salinity in saline soil were analyzed by different planting years[J]. Agriculture and Technology, (1):4-5.]
Esteban G. Jobbáge, Robert B Jackson. 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants[J]. Biogeochemistry, 53(1):51-77.
稿件与作者信息
白曙光
BAI Shuguang
焦燕
JIAO Yan
jiaoyan@imnu.edu.cn
温慧洋
WEN Huiyang
谷鹏
GU Peng
杨洁
YANG Jie
基金项目: 国家自然科学基金项目(41375144,41565009,41675140);2016年度内蒙古青年创新人才计划
National natural science foundation project(41375144,41565009,41675140);2016 Inner Mongolia youth innovation talent plan
出版历史
出版时间: 2018年7月12日 (版本3
参考文献列表中查看
地球环境学报
Journal of Earth Environment